Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomolecules ; 14(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39062457

RESUMEN

The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.


Asunto(s)
Bifidobacterium bifidum , Conformación de Ácido Nucleico , Riboswitch , Bifidobacterium bifidum/metabolismo , Bifidobacterium bifidum/genética , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Dispersión del Ángulo Pequeño , Ligandos , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Sitios de Unión
2.
Am J Pathol ; 194(9): 1664-1683, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885924

RESUMEN

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.


Asunto(s)
Bifidobacterium bifidum , Mucosa Intestinal , Quinasa de Cadena Ligera de Miosina , PPAR gamma , Permeabilidad , Uniones Estrechas , Receptor Toll-Like 2 , Factor de Transcripción ReIA , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Bifidobacterium bifidum/metabolismo , Bifidobacterium bifidum/fisiología , Células CACO-2 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Quinasa de Cadena Ligera de Miosina/metabolismo , Permeabilidad/efectos de los fármacos , PPAR gamma/metabolismo , Probióticos/farmacología , Uniones Estrechas/metabolismo , Receptor Toll-Like 2/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 6
3.
Enzyme Microb Technol ; 173: 110355, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041880

RESUMEN

Due to the increasing demand for health-conscious and environmentally friendly products, D-mannose has gained significant attention as a natural, low-calorie sweetener. The use of D-mannose isomerases (D-MIases) for D-mannose production has emerged as a prominent area of research, offering superior advantages compared with conventional methods such as plant extraction and chemical synthesis. In this study, a gene encoding D-MIase was cloned from Bifidobacterium and expressed in E. coli BL21 (DE3). The heterologously expressed enzyme, Bifi-mannose, formed a trimer with a molecular weight of 146.3 kDa and a melting temperature (Tm) of 63.39 ± 1.3 °C. Bifi-mannose exhibited optimal catalytic activity at pH 7.5 and 55 °C, and retained more than 80% of its activity after a 3-hour incubation at 55 °C, demonstrating excellent thermal stability. The Km, Vmax, and kcat/Km values of Bifi-mannose for D-fructose isomerization were determined as 538.7 ± 62.5 mM, 11.7 ± 0.9 µmol·mg1·s1, and 1.02 ± 0.3 mM1·s1, respectively. Notably, under optimized conditions, catalytic yields of 29.4, 87.1, and 148.5 mg·mL1 were achieved when using 100, 300, and 500 mg·mL1 of D-fructose as substrates, resulting in a high conversion rate (29%). Furthermore, kinetic parameters and molecular docking studies revealed that His387 residue primarily participates in the opening of the pyranose ring, while His253 acts as a basic catalyst in the isomerization process.


Asunto(s)
Isomerasas Aldosa-Cetosa , Bifidobacterium bifidum , Manosa , Escherichia coli/metabolismo , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Simulación del Acoplamiento Molecular , Isomerasas Aldosa-Cetosa/metabolismo , Fructosa , Temperatura , Concentración de Iones de Hidrógeno , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Clonación Molecular
4.
J Investig Med ; 72(1): 67-79, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37723650

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is strongly associated with disturbances in the intestinal microbiota. Herein, the biological effects and mechanism of Bifidobacterium bifidum BGN4 fractions in regulating hepatocyte ferroptosis during MAFLD progression were investigated. To establish an in vitro model of MAFLD, LO2 cells were subjected to palmitic acid (PA). The mRNA and protein expressions were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. LO2 cell proliferation was examined using 5-diphenyltetrazolium bromide (MTT) and ethynyl-2'-deoxyuridine (EdU) assays, whereas its apoptosis was evaluated by flow cytometry. Furthermore, level of reactive oxygen species (ROS) was measured using 2', 7,-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Additionally, the levels of Fe2+, malondialdehyde (MDA), and glutathione (GSH), as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were detected using corresponding kits. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were performed to analyze the interaction between sterol-regulatory element binding protein 1 (SREBP1) and cytochrome P450-2E1 (CYP2E1) promoter. Our results revealed that Bifidobacterium bifidum BGN4 fractions effectively ameliorated PA-induced hepatocyte injury, oxidative stress, and ferroptosis. However, these beneficial effects of BGN4 fractions on PA-induced hepatocyte were dramatically reversed by SREBP1 overexpression, suggesting that BGN4 attenuated MAFLD by acting on SREBP1. Moreover, we observed that BGN4 fractions inhibited CYP2E1 transcription by suppressing SREBP1 nuclear translocation. In addition, CYP2E1 overexpression eliminated the inhibitory effect of BGN4 fractions on PA-induced hepatocyte oxidative stress and ferroptosis. These findings collectively indicated that BGN4 fractions reduced CYP2E1 expression by inhibiting SREBP1 nuclear translocation, thereby suppressing hepatocyte oxidative stress and ferroptosis during the development of MAFLD.


Asunto(s)
Bifidobacterium bifidum , Ferroptosis , Humanos , Citocromo P-450 CYP2E1/metabolismo , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Ácido Palmítico , Hepatocitos/metabolismo
5.
Sci Rep ; 13(1): 19155, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932328

RESUMEN

The gold-standard treatment for Parkinson's disease is levodopa (L-DOPA), which is taken orally and absorbed intestinally. L-DOPA must reach the brain intact to exert its clinical effect; peripheral metabolism by host and microbial enzymes is a clinical management issue. The gut microbiota is altered in PD, with one consistent and unexplained observation being an increase in Bifidobacterium abundance among patients. Recently, certain Bifidobacterium species were shown to have the ability to metabolize L-tyrosine, an L-DOPA structural analog. Using both clinical cohort data and in vitro experimentation, we investigated the potential for commensal Bifidobacteria to metabolize this drug. In PD patients, Bifidobacterium abundance was positively correlated with L-DOPA dose and negatively with serum tyrosine concentration. In vitro experiments revealed that certain species, including B. bifidum, B. breve, and B. longum, were able to metabolize this drug via deamination followed by reduction to the compound 3,4-dihydroxyphenyl lactic acid (DHPLA) using existing tyrosine-metabolising genes. DHPLA appears to be a waste product generated during regeneration of NAD +. This metabolism occurs at low levels in rich medium, but is significantly upregulated in nutrient-limited minimal medium. Discovery of this novel metabolism of L-DOPA to DHPLA by a common commensal may help inform medication management in PD.


Asunto(s)
Bifidobacterium bifidum , Enfermedad de Parkinson , Humanos , Levodopa , Bifidobacterium/metabolismo , Bifidobacterium bifidum/metabolismo
6.
Nutrients ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904068

RESUMEN

Porphyromonas gingivalis (PG) is closely involved in the outbreak of periodontitis and cognitive impairment (CI). Herein, we examined the effects of anti-inflammatory Lactobacillus pentosus NK357 and Bifidobacterium bifidum NK391 on PG- or its extracellular vesicles (pEVs)-induced periodontitis and CI in mice. Oral administration of NK357 or NK391 significantly decreased PG-induced tumor necrosis factor (TNF)-α, receptor activator of nuclear factors κB (RANK), and RANK ligand (RANKL) expression, gingipain (GP)+lipopolysaccharide (LPS)+ and NF-κB+CD11c+ populations, and PG 16S rDNA level in the periodontal tissue. Their treatments also suppressed PG-induced CI -like behaviors, TNF-α expression and NF-κB-positive immune cells in the hippocampus and colon, while PG-suppressed hippocampal BDNF and N-methyl-D-aspartate receptor (NMDAR) expression increased. The combination of NK357 and NK391 additively alleviated PG- or pEVs-induced periodontitis, neuroinflammation, CI-like behaviors, colitis, and gut microbiota dysbiosis and increased PG- or pEVs-suppressed BDNF and NMDAR expression in the hippocampus. In conclusion, NK357 and NK391 may alleviate periodontitis and dementia by regulating NF-κB, RANKL/RANK, and BDNF-NMDAR signaling and gut microbiota.


Asunto(s)
Bifidobacterium bifidum , Disfunción Cognitiva , Vesículas Extracelulares , Lactobacillus pentosus , Periodontitis , Ratones , Animales , FN-kappa B/metabolismo , Lactobacillus pentosus/metabolismo , Porphyromonas gingivalis/metabolismo , Bifidobacterium bifidum/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Periodontitis/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Activador del Factor Nuclear kappa-B , Disfunción Cognitiva/metabolismo , Vesículas Extracelulares/metabolismo , Lipopolisacáridos/metabolismo
7.
Food Funct ; 14(1): 181-194, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477762

RESUMEN

Probiotics have been evaluated as alternative approaches for preventing the relapse of Crohn's disease (CD). Previously, we observed strain-specific anti-inflammatory properties of Bifidobacterium bifidum in 2,4,6-trinitrobenzene sulfonic acid (TNBS) acute colitis models. In this study, we further assessed the effects of several B. bifidum strains on colonic damage, fibrosis, inflammatory factors, intestinal microbial and metabolic profiles, and peripheral regulatory T cells (Tregs) in the context of TNBS chronic colitis in mice. These results indicated that B. bifidum FJSWX19M5, but not FXJWS17M4, ameliorated body weight loss, reduced colonic shortening and injury, decreased markers of gut inflammation, and rebalanced colonic metabolism in TNBS-treated mice. FJSWX19M5 supplementation also promoted Treg cell differentiation and intestinal barrier restoration compared to other strains. All living B. bifidum strains (FJSWX19M5, FXJWS17M4 and FHENJZ3M6) seemed to restore the disruption of the gut microbiota caused by TNBS. The co-culture of B. bifidum strains and mesenteric lymph node cells from TNBS-treated mice showed that those strains with anti-colitis could induce higher IL-10 levels and a lower ratio of IL-22/IL-10 and IL-17/IL-10 when compared to those strains that were not protective. Furthermore, heat-killed FJSWX19M5 exhibited a relief effect on colitis-related symptoms (including body weight loss, colonic shortening and injury). These data imply that specific B. bifidum strains or their lysates may be the current therapeutic alternatives for CD.


Asunto(s)
Bifidobacterium bifidum , Colitis , Enfermedad de Crohn , Animales , Ratones , Linfocitos T Reguladores , Interleucina-10/genética , Interleucina-10/metabolismo , Bifidobacterium bifidum/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad , Citocinas/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Pérdida de Peso , Modelos Animales de Enfermedad
8.
Nutrients ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36558391

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with gut dysbiosis. This study aimed to investigate the effects of heat-killed Bifidobacterium bifidum B1628 (HB1628) in dextran sulfate sodium (DSS)-induced colitis in mice. The following three mouse groups were included (n = eight per group): NC (normal control), DSS (colitis), and HB1628 (colitis and postbiotic). The mice in the DSS group showed significant weight loss and histological damage, developed bloody diarrhea, scored high in the disease activity index (DAI), and exhibited increases in pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6, and tumor necrosis factor [TNF]-α) and decreases in an anti-inflammatory cytokine (IL-13) in the serum. These changes were accompanied by gut microbiota modulation in colitis mice (decreases in Rikenellaceae and Eubacterium; increases in Peptostreptococcaceae, Bacteroides vulgatus, and Parasutterella excrementihominis). The HB1628 group had lower DAIs, histology scores, and serum levels of pro-inflammatory cytokines (IL-1ß and TNF-α), but higher levels of an anti-inflammatory cytokine (IL-13), compared with the DSS group, suggesting a less severe inflammatory state after the HB1628 intervention. Additionally, HB1628 improved DSS-induced gut dysbiosis, which is evidenced by increases in intestinal beneficial bacteria, such as Lactobacillus, and decreases in known unfavorable taxa in IBD, e.g., Porphyromonadaceae, Subdoligranulum, Lachnospiraceae bacterium 3_1_46FAA, and Alistipes indistinctus. Functional metagenomics revealed three significantly enriched metabolic pathways in the HB1628 group (namely, the aerobic respiration I [cytochrome c] pathway and the superpathways of L-phenylalanine biosynthesis and L-tryptophan biosynthesis, respectively). In conclusion, our results showed that HB1628 effectively improved the inflammation state and tissue damage in DSS-induced colitis mice, and the symptom relief effect was accompanied by obvious gut microbiota remodulation.


Asunto(s)
Bifidobacterium bifidum , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Antiinflamatorios/farmacología , Bifidobacterium bifidum/metabolismo , Colitis/terapia , Colitis/tratamiento farmacológico , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/patología , Calor , Enfermedades Inflamatorias del Intestino/patología , Interleucina-13 , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa
9.
Food Funct ; 13(23): 12156-12169, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36326134

RESUMEN

Probiotics have long been shown to modulate inflammatory bowel disease (IBD) in a variety of ways, and their major metabolites, short-chain fatty acids (SCFAs), have been shown to play a role in the alleviation of ulcerative colitis (UC). In the present study, DSS-treated C57BL/6J mice were gavaged with Bifidobacterium bifidum H3-R2, Propionibacterium freudenreichii B1 and Clostridium butyricum C1-6, which are capable of high production of acetic acid, propionic acid and butyric acid, respectively. We measured the effects of these three strains on inflammatory factors, intestinal barrier function, colitis-related signalling pathways, intestinal microbiome composition, and SCFA content in intestinal contents. The results of the experiment showed that all three strains differentially increased the colon length; reduced weight loss; decreased the splenic index; decreased the DAI scores and MPO activity; decreased proinflammatory factor levels (IL-8, IL-1ß and TNF-α); increased anti-inflammatory factor production (IL-10); and enhanced tight junction protein expression (ZO-1, occludin, and claudin-1). Moreover, Bifidobacterium bifidum H3-R2 and Propionibacterium freudenreichii B1 played crucial roles through TLRs/RHO kinase (ROCK1) and Wnt/ß-catenin pathways in these protective effects. In addition, three strains improved the composition of the intestinal flora and increased the production of SCFAs; notably, Propionibacterium freudenreichii B1 had the best effect. This study provides a scientific basis for the further application of probiotics in the treatment of UC in the future.


Asunto(s)
Bifidobacterium bifidum , Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Colitis/inducido químicamente , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Bifidobacterium bifidum/metabolismo , Modelos Animales de Enfermedad
10.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077182

RESUMEN

Paraprobiotics, inactivated microbial cells, regulate immune system and exhibit antioxidant and anti-inflammatory activities in patients with weakened immunity or the elderly. This study evaluated the anti-tumor effects of heat-killed Bifidobacterium and Lactobacillus on human gastric cancer MKN1 cells in vitro and in vivo in xenograft animal models. First, cytotoxicity and apoptosis in MKN1 cells of 11 different heat-killed Bifidobacterium or Lactobacillus strains were examined using the MTT assay or flow cytometry, respectively. Then, BALB/c nude mice xenograft animal models were implanted with human gastric cancer MKN1 cells and orally administered a selected single or a mixture of heat-killed bacterial strains to investigate their inhibitory effect on tumor growth. In addition, the expression of p-Akt, p53, Bax, Bak, cleaved caspase-9, -3, and PARP in the tumor tissues was analyzed using Western blotting assay or immunohistochemistry staining. The results show that heat-killed B. bifidum MG731 (MG731), L. reuteri MG5346 (MG5346), and L. rhamnosus MG5200 (MG5200) induced relatively greater apoptosis than other strains in MKN1 cells. Oral administration of a single dose or a mixture of MG731, MG5346, or MG5200 significantly delayed tumor growth, and MG731 had the most effective anti-tumor effect in the xenograft model. Protein expression of p-Akt, p53, Bax, cleaved caspase-3 and -9, and PARP in tumors derived from the xenograft model correlated with the results of the immunohistochemistry staining.


Asunto(s)
Bifidobacterium bifidum , Neoplasias Gástricas , Anciano , Animales , Apoptosis , Bifidobacterium bifidum/metabolismo , Línea Celular Tumoral , Proliferación Celular , Xenoinjertos , Calor , Humanos , Ratones , Ratones Desnudos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/metabolismo
11.
Inflammation ; 45(6): 2388-2405, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35776290

RESUMEN

Enteric glial cells (EGCs) are involved in intestinal inflammation. In this study, we will investigate how Bifidobacterium bifidum (B.b.) and Bacteroides fragilis (B.f.) influence EGC regulation. After pretreatment with lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the expressions of major histocompatibility complex class II (MHC-II), CD80, CD86, glial cell line-derived neurotrophic factor (GDNF), toll-like receptor 2 (TLR-2), and tumor necrosis factor-α (TNF-α) in EGCs were detected using polymerase chain reaction and western blot after co-culture with the supernatants of B.b. or B.f. (multiplicity of infection, 40:1 or 80:1). Finally, EGCs were co-cultured with naive CD4+ T cells, and the expressions of interleukin (IL)-2, IL-4, IL-10, and IL-17 in supernatant were measured using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of MHC-II and CD86 in EGCs were increased after combined stimulation with LPS and IFN-γ. The expressions of MHC-II, GDNF, TLR-2, and TNF-α were all significantly upregulated in stimulated EGCs. The B.b. supernatant downregulated the expressions of MHC-II, GDNF, TLR-2, and TNF-α in stimulated EGCs, whereas the B.f. supernatant upregulated TLR-2 expression and downregulated MHC-II expression. The expressions of IL-4, IL-2, and IL-17 after co-culture of naive CD4+ T cells and stimulated EGCs were significantly increased. The supernatant of B.b. or B.f. downregulated the expressions of these cytokines. The low-concentration B.b. supernatant upregulated IL-10 expression. Conclusions B.b. and B.f. may influence intestinal inflammation by regulating MHC-II, GDNF, TLR-2, and TNF-α expression in EGCs and IL-4, IL-2, IL-17, and IL-10 secretion.


Asunto(s)
Bacteroides fragilis , Bifidobacterium bifidum , Neuroglía , Humanos , Bacteroides fragilis/metabolismo , Bifidobacterium bifidum/metabolismo , Células Cultivadas , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-2 , Interleucina-4/metabolismo , Lipopolisacáridos , Neuroglía/metabolismo , Neuroglía/microbiología , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Environ Microbiol Rep ; 14(4): 637-645, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35581157

RESUMEN

Bifidobacterium bifidum possesses two extracellular sialidases (SiaBb1 and SiaBb2) that release free sialic acid from mucin sialoglycans, which can be utilized via cross-feeding by Bifidobacterium breve that, otherwise, is prevented from utilizing this nutrient source. Modification of sialic acids with O-acetyl esters is known to protect mucin glycans from degradation by bacterial sialidases. Compared to SiaBb2, SiaBb1 has an additional O-acetylesterase (Est) domain. We aimed to elucidate the role of the SiaBb1 Est domain from B. bifidum in sialic acid cross-feeding within Bifidobacterium. Pre-treatment of mucin secreted from bovine submaxillary glands (BSM) using His6 -tagged-Est and -SiaBb2 released a higher amount of sialic acid compared to the pre-treatment by His6 -SiaBb2. Growth of B. breve increased with an increase in nanE expression when supplemented with both His6 -Est- and His6 -SiaBb2-treated BSM. These results indicate that the esterase activity of the SiaBb1 Est domain enhances the efficiency of SiaBb2 to cleave sialic acid from mucin. This free sialic acid can be utilized by coexisting sialic acid scavenging B. breve via cross-feeding. Here, we provide the molecular mechanism underlying the unique sialoglycan degradation property of B. bifidum which is mediated by the complementary activities of SiaBb1 and SiaBb2 in the context of sialic acid cross-feeding.


Asunto(s)
Bifidobacterium bifidum , Bifidobacterium breve , Acetilesterasa/genética , Acetilesterasa/metabolismo , Animales , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/metabolismo , Bovinos , Proliferación Celular , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ácidos Siálicos/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456924

RESUMEN

Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often complicated by the high price of sugar nucleotides, stringent substrate specificity, and low enzyme stability. Engineered glycosidases (EC 3.2.1) represent a good synthetic alternative, especially if variations in the substrate structure are desired. Site-directed mutagenesis can improve the synthetic process with higher yields and/or increased reaction selectivity. So far, the synthesis of human milk oligosaccharides by glycosidases has mostly been limited to analytical reactions with mass spectrometry detection. The present work reveals the potential of a library of engineered glycosidases in the preparative synthesis of three tetrasaccharides derived from lacto-N-tetraose (Galß4GlcNAcß3Galß4Glc), employing sequential cascade reactions catalyzed by ß3-N-acetylhexosaminidase BbhI from Bifidobacterium bifidum, ß4-galactosidase BgaD-B from Bacillus circulans, ß4-N-acetylgalactosaminidase from Talaromyces flavus, and ß3-galactosynthase BgaC from B. circulans. The reaction products were isolated and structurally characterized. This work expands the insight into the multi-step catalysis by glycosidases and shows the path to modified derivatives of complex carbohydrates that cannot be prepared by standard glycosyltransferase methods.


Asunto(s)
Bifidobacterium bifidum , Leche Humana , Bifidobacterium bifidum/metabolismo , Glicósido Hidrolasas/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Recién Nacido , Leche Humana/metabolismo , Oligosacáridos/química , Especificidad por Sustrato
14.
Food Funct ; 13(9): 5115-5123, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35416187

RESUMEN

Inflammatory bowel disease (IBD) characterized by relapsed intestinal inflammation and barrier function disruption is still a great therapeutic challenge. This study aimed to screen probiotics that have the potential to help alleviate IBD and further elucidate their mechanism of action. Caco-2 cell differentiated monolayers and RAW264.7 cells stimulated by lipopolysaccharide (LPS) were used for probiotic screening in vitro, and then the efficacies of the obtained six bacterial strains were evaluated in mice with dextran sulfate sodium (DSS)-induced colitis. The results showed that all of the strains at varying degrees could increase the transepithelial electrical resistance (TEER) value, decrease the influx of FITC-dextran in Caco-2 cell monolayers and attenuate the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated RAW264.7 cells. In vivo experiments indicated that Bifidobacterium bifidum FL-276.1 (FL-276.1) and Bifidobacterium bifidum FL-228.1 (FL-228.1) showed the best efficacies to ameliorate body weight loss, colon shortening, and intestinal barrier disruption. Accordingly, in FL-276.1 and FL-228.1 groups, the genes of zonula occludens-1 (ZO-1), claudin-4, occludin and mucin 2 (Muc2) in mouse colonic tissues were significantly upregulated, while TNF-α, IL-1ß and IL-6 were downregulated. Further results showed that strains FL-276.1 and FL-228.1 could activate the aryl hydrocarbon receptor (AhR) in the intestine. Our study showed that the two Bifidobacterium bifidum strains, FL-276.1 and FL-228.1, ameliorated DSS-induced colitis by enhancing the intestinal barrier and anti-inflammation potentially via the AhR pathway.


Asunto(s)
Bifidobacterium bifidum , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Bifidobacterium bifidum/metabolismo , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/terapia , Colon/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Microb Ecol ; 84(3): 922-934, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34676439

RESUMEN

Bifidobacterium bifidum is part of the core microbiota of healthy infant guts where it may form biofilms on epithelial cells, mucosa, and food particles in the gut lumen. Little is known about transcriptional changes in B. bifidum engaged in synergistic multispecies biofilms with ecologically relevant species of the human gut. Recently, we reported prevalence of synergism in mixed-species biofilms formed by the human gut microbiota. This study represents a comparative gene expression analysis of B. bifidum when grown in a single-species biofilm and in two multispecies biofilm consortia with Bifidobacterium longum subsp. infantis, Bacteroides ovatus, and Parabacteroides distasonis in order to identify genes involved in this adaptive process in mixed biofilms and the influence on its metabolic and functional traits. Changes up to 58% and 43% in its genome were found when it grew in three- and four-species biofilm consortia, respectively. Upregulation of genes of B. bifidum involved in carbohydrate metabolism (particularly the galE gene), quorum sensing (luxS and pfs), and amino acid metabolism (especially branched chain amino acids) in both multispecies biofilms, compared to single-species biofilms, suggest that they may be contributing factors for the observed synergistic biofilm production when B. bifidum coexists with other species in a biofilm.


Asunto(s)
Bifidobacterium bifidum , Microbioma Gastrointestinal , Microbiota , Lactante , Humanos , Bifidobacterium bifidum/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Biopelículas
16.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1564-1578, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34866612

RESUMEN

ß-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some ß-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain ß-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain ß-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective ß-galactosidase modification for industrial purposes in the future.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium bifidum/metabolismo , beta-Galactosidasa/metabolismo , Proteínas Bacterianas/química , Bifidobacterium bifidum/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Galactosa/metabolismo , Hidrólisis , Lactosa/metabolismo , Especificidad por Sustrato , beta-Galactosidasa/química
17.
Molecules ; 26(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641607

RESUMEN

The application of bacterial cultures in food fermentation is a novel strategy to increase the "natural" levels of bioactive compounds. The unique ability of lactic acid bacteria (LAB) to produce folate, B vitamins, and conjugated linolenic acid cis9trans11 C18:2 (CLA) during cold storage up to 21 days was studied. Although some species of LAB can produce folates and other important nutrients, little is known about the production ability of yogurt starter cultures. Pasteurized milk samples were inoculated with four different combinations of commercially available yogurt vaccines, including starter cultures of Bifidobacterium bifidum. Both the type of vaccine and the time of storage at 8 °C had a significant effect on the folate and CLA contents in the tested fermented milks. The highest folate content (105.4 µg/kg) was found in fresh fermented milk inoculated with Lactobacillus delbrueckii, Streptococcus thermophilus, and Bifidobacterium bifidum. Only the mix of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Bifidobacterium bifidum showed potential (59% increase) to synthesize folate during seven days of storage. A significant increase in the content of CLA, when compared to fresh fermented milk, was observed during cold storage for up to 21 days in products enriched with Bifidobacterium bifidum.


Asunto(s)
Productos Lácteos Cultivados/microbiología , Ácido Fólico/metabolismo , Lactobacillales/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Leche/metabolismo , Leche/microbiología , Complejo Vitamínico B/metabolismo , Animales , Bifidobacterium bifidum/metabolismo , Biofortificación/métodos , Fermentación , Microbiología de Alimentos , Lactobacillus delbrueckii/metabolismo , Probióticos , Streptococcus thermophilus/metabolismo , Factores de Tiempo
18.
Sci Rep ; 11(1): 17895, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504213

RESUMEN

This study investigated the role of dietary prebiotic mannan-oligosaccharides (MOS), and probiotic Bifidobacterium bifidum (BFD) in lipid metabolism, deposition, and consequent health indices in broiler chicken. The supplementation of 0.2% MOS along with either 106 or 107 CFU BFD/g feed resulted in downregulation of Acetyl-CoA carboxylase, fatty acid synthase, sterolregulatory element binding protein-1, and apolipoprotein B100; and up-regulation of peroxisome proliferator activated receptor-α AMP-activated protein kinase α-1, and stearoyl CoA (∆9) desaturase-1 hepatic expression in broiler chicken. The birds supplemented with 0.2% MOS along with either 106 or 107 CFU BFD/g feed depicted lower body fat percentage, palmitic acid, stearic acid, and saturated fatty acid contents, whereas, higher palmitoleic acid, oleic acid, and MUFA contents were observed. The ∆9-desaturase indices of chicken meat have shown higher values; and elongase index (only thigh) and thioesterase index have shown lower values in birds supplemented with 0.2% MOS along with either 106 or 107 CFU BFD/g feed. The meat health indices such as Polyunsaturated fatty acids (PUFA)/Saturated fatty acids (SFA) ratio, Mono-saturated fatty acids (MUFA)/SFA ratio, unsaturated fatty acids (UFA)/SFA ratio, hypocholesterolemic/hypercholesterolemic fatty acid ratio, saturation index, atherogenic index, thrombogenic index, and hypercholesterolemic fatty acid content were positively improved in birds supplemented with 0.2% MOS along with either 106 or 107 CFU BFD/g feed. Similarly, the birds supplemented with 0.2% MOS along with either 106 or 107 CFU BFD/g feed have shown lower serum triglyceride and total cholesterol levels along with higher high density levels and improved serum health indices cardiac risk ratio, atherogenic coefficient, and, atherogenic index of plasma.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Bifidobacterium bifidum/metabolismo , Suplementos Dietéticos , Metabolismo de los Lípidos/efectos de los fármacos , Mananos/farmacología , Transcriptoma/efectos de los fármacos , Animales , Pollos
19.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299216

RESUMEN

Bifidobacterium bifidum strains, an important component of probiotic foods, can form biofilms on abiotic surfaces, leading to increased self-resistance. However, little is known about the molecular mechanism of B. bifidum biofilm formation. A time series transcriptome sequencing and untargeted metabolomics analysis of both B. bifidum biofilm and planktonic cells was performed to identify key genes and metabolites involved in biofilm formation. Two hundred thirty-five nonredundant differentially expressed genes (DEGs) (including vanY, pstS, degP, groS, infC, groL, yajC, tadB and sigA) and 219 nonredundant differentially expressed metabolites (including L-threonine, L-cystine, L-tyrosine, ascorbic acid, niacinamide, butyric acid and sphinganine) were identified. Thirteen pathways were identified during the integration of both transcriptomics and metabolomics data, including ABC transporters; quorum sensing; two-component system; oxidative phosphorylation; cysteine and methionine metabolism; glutathione metabolism; glycine, serine and threonine metabolism; and valine, leucine and isoleucine biosynthesis. The DEGs that relate to the integration pathways included asd, atpB, degP, folC, ilvE, metC, pheA, pstS, pyrE, serB, ulaE, yajC and zwf. The differentially accumulated metabolites included L-cystine, L-serine, L-threonine, L-tyrosine, methylmalonate, monodehydroascorbate, nicotinamide, orthophosphate, spermine and tocopherol. These results indicate that quorum sensing, two-component system and amino acid metabolism are essential during B. bifidum biofilm formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium bifidum/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Percepción de Quorum , Transcriptoma , Triticum/microbiología
20.
Int J Nanomedicine ; 16: 4643-4659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267516

RESUMEN

PURPOSE: Hypoxia is considered to be obstructive to tumor treatment, but the reduced oxygen surroundings provide a suitable habitat for Bifidobacterium bifidum (BF) to colonize. The anaerobe BF selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. Therefore, BF may be a potential targeting agent which could be used effectively in tumor treatment. We aimed to determine whether a novel BF-mediated strategy, that was designed to deliver AP-PFH/PLGA NPs (aptamers CCFM641-5-functionalized Perfluorohexane (PFH) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles) by aptamer-directed approach into solid tumor based on the tumor-targeting ability of BF, could improve efficiency of high intensity focused ultrasound (HIFU) treatment of breast cancer. METHODS: We synthesized AP-PFH/PLGA NPs using double emulsion method and carbodiimide method. Then, we evaluated targeting ability of AP-PFH/PLGA NPs to BF in vivo. Finally, we studied the efficacy of HIFU ablation based on BF plus AP-PFH/PLGA NPs (BF-mediated HIFU ablation) in tumor. RESULTS: The elaborately designed AP-PFH/PLGA NPs can target BF colonized in tumor to achieve high tumor accumulation, which can significantly enhance HIFU therapeutic efficiency. We also found that, compared with traditional chemotherapy, this therapy not only inhibits tumor growth, but also significantly prolongs the survival time of mice. More importantly, this treatment strategy has no obvious side effects. CONCLUSION: We successfully established a novel therapy method, BF-mediated HIFU ablation, which provides an excellent platform for highly efficient and non-invasive therapy of tumor.


Asunto(s)
Bifidobacterium bifidum/metabolismo , Portadores de Fármacos/metabolismo , Nanopartículas/administración & dosificación , Animales , Línea Celular Tumoral , Fluorocarburos/química , Humanos , Ratones , Nanopartículas/uso terapéutico , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA