Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.764
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739791

RESUMEN

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Fotosíntesis , Fotosíntesis/genética , Relojes Circadianos/genética , Biotecnología/métodos , Cianobacterias/genética , Cianobacterias/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717668

RESUMEN

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Asunto(s)
Sedimentos Geológicos , Familia de Multigenes , Filogenia , Microbiología del Suelo , Regiones Antárticas , Sedimentos Geológicos/microbiología , Metabolismo Secundario/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/clasificación , Genoma Bacteriano , Biotecnología/métodos , Vías Biosintéticas/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
3.
Biomolecules ; 14(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785964

RESUMEN

Mannosylerythritol lipids (MELs) are a class of glycolipids that have been receiving increasing attention in recent years due to their diverse biological activities. MELs are produced by certain fungi and display a range of bioactivities, making them attractive candidates for various applications in medicine, agriculture, and biotechnology. Despite their remarkable qualities, industrial-scale production of MELs remains a challenge for fungal strains. Excellent fungal strains and fermentation processes are essential for the efficient production of MELs, so efforts have been made to improve the fermentation yield by screening high-yielding strains, optimizing fermentation conditions, and improving product purification processes. The availability of the genome sequence is pivotal for elucidating the genetic basis of fungal MEL biosynthesis. This review aims to shed light on the applications of MELs and provide insights into the genetic basis for efficient MEL production. Additionally, this review offers new perspectives on optimizing MEL production, contributing to the advancement of sustainable biosurfactant technologies.


Asunto(s)
Hongos , Glucolípidos , Glucolípidos/biosíntesis , Glucolípidos/metabolismo , Glucolípidos/genética , Hongos/genética , Hongos/metabolismo , Fermentación , Tensoactivos/metabolismo , Biotecnología/métodos
4.
World J Microbiol Biotechnol ; 40(7): 201, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736020

RESUMEN

Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.


Asunto(s)
Biopelículas , Dextranasa , Flavobacterium , Glicósido Hidrolasas , Streptococcus mutans , Biopelículas/crecimiento & desarrollo , Dextranasa/metabolismo , Dextranasa/genética , Flavobacterium/enzimología , Flavobacterium/genética , Streptococcus mutans/enzimología , Streptococcus mutans/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hidrólisis , Biotecnología/métodos
5.
Methods Mol Biol ; 2726: 285-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780736

RESUMEN

Applications in biotechnology and bio-medical research call for effective strategies to design novel RNAs with very specific properties. Such advanced design tasks require support by computational tools but at the same time put high demands on their flexibility and expressivity to model the application-specific requirements. To address such demands, we present the computational framework Infrared. It supports developing advanced customized design tools, which generate RNA sequences with specific properties, often in a few lines of Python code. This text guides the reader in tutorial format through the development of complex design applications. Thanks to the declarative, compositional approach of Infrared, we can describe this development as a step-by-step extension of an elementary design task. Thus, we start with generating sequences that are compatible with a single RNA structure and go all the way to RNA design targeting complex positive and negative design objectives with respect to single or even multiple target structures. Finally, we present a "real-world" application of computational design to create an RNA device for biotechnology: we use Infrared to generate design candidates of an artificial "AND" riboswitch, which activates gene expression in the simultaneous presence of two different small metabolites. In these applications, we exploit that the system can generate, in an efficient (fixed-parameter tractable) way, multiple diverse designs that satisfy a number of constraints and have high quality w.r.t. to an objective (by sampling from a Boltzmann distribution).


Asunto(s)
Biología Computacional , Conformación de Ácido Nucleico , ARN , Programas Informáticos , ARN/genética , ARN/química , Biología Computacional/métodos , Riboswitch/genética , Biotecnología/métodos
6.
Arch Microbiol ; 206(6): 247, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713374

RESUMEN

Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.


Asunto(s)
Archaea , Bacterias , Biotecnología , Ambientes Extremos , Extremófilos , Extremófilos/metabolismo , Archaea/metabolismo , Archaea/genética , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
7.
Microb Pathog ; 191: 106679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718953

RESUMEN

A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.


Asunto(s)
Antibacterianos , Bacterias , Infecciones Bacterianas , Biopelículas , Nanopartículas del Metal , Óxido de Zinc , Biopelículas/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Humanos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Biotecnología
8.
World J Microbiol Biotechnol ; 40(6): 189, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702568

RESUMEN

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.


Asunto(s)
Biodegradación Ambiental , Metales de Tierras Raras , Microalgas , Microalgas/metabolismo , Metales de Tierras Raras/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Restauración y Remediación Ambiental/métodos , Biotecnología/métodos , Residuos Industriales/análisis , Bioacumulación
9.
World J Microbiol Biotechnol ; 40(7): 207, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767733

RESUMEN

Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.


Asunto(s)
Celulosa , Hongos , Lignina , Madera , Lignina/metabolismo , Hongos/metabolismo , Madera/microbiología , Celulosa/metabolismo , Biotecnología/métodos
10.
Nat Biotechnol ; 42(5): 685-686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720152
11.
World J Microbiol Biotechnol ; 40(7): 209, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771414

RESUMEN

Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.


Asunto(s)
Enfermedades Transmisibles , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/inmunología , Humanos , Enfermedades Transmisibles/inmunología , Enfermedades Transmisibles/terapia , Animales , Biotecnología/métodos , Ingeniería de Proteínas/métodos
14.
16.
Nat Biotechnol ; 42(5): 703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760563
17.
Adv Appl Microbiol ; 127: 143-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763527

RESUMEN

Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.


Asunto(s)
Penicilinas , Penicillium chrysogenum , Penicillium chrysogenum/metabolismo , Penicillium chrysogenum/genética , Penicilinas/biosíntesis , Penicilinas/metabolismo , Biotecnología , Biodegradación Ambiental , Metabolismo Secundario , Microbiología Industrial
18.
Nat Biotechnol ; 42(5): 693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760557
19.
Extremophiles ; 28(2): 26, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683238

RESUMEN

Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.


Asunto(s)
Extremófilos , Extremófilos/metabolismo , Extremófilos/fisiología , Desarrollo Sostenible , Adaptación Fisiológica , Ambientes Extremos , Biotecnología
20.
Microb Biotechnol ; 17(5): e14450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683674

RESUMEN

Microbial technologies constitute a huge and unique potential for confronting major humanitarian and biosphere challenges, especially in the realms of sustainability and providing basic goods and services where they are needed and particularly in low-resource settings. These technologies are evolving rapidly. Powerful approaches are being developed to create novel products, processes, and circular economies, including new prophylactics and therapies in healthcare, bioelectric systems, and whole-cell understanding of metabolism that provides novel insights into mechanisms and how they can be utilised for applications. The modulation of microbiomes promises to create important applications and mitigate problems in a number of spheres. Collectively, microbial technologies save millions of lives each year and have the potential, through increased deployment, to save many more. They help restore environmental health, improve soil fertility, enable regenerative agriculture, reduce biodiversity losses, reduce pollution, and mitigate polluted environments. Many microbial technologies may be considered to be 'healing' technologies - healing of humans, of other members of the biosphere, and of the environment. This is the Age of Microbial Technology. However, the current exploitation of microbial technologies in the service of humanity and planetary health is woefully inadequate and this failing unnecessarily costs many lives and biosphere deterioration. Microbiologists - the practitioners of these healing technologies - have a special, preordained responsibility to promote and increase their deployment for the good of humanity and the planet. To do this effectively - to actually make a difference - microbiologists will need to partner with key enablers and gatekeepers, players such as other scientists with essential complementary skills like bioengineering and bioinformatics, politicians, financiers, and captains of industry, international organisations, and the general public. Orchestration and coordination of the establishment and functioning of effective partnerships will best be accomplished by learned societies, their academies, and the international umbrella organisations of learned societies. Effective dedication of players to the tasks at hand will require unstinting support from employers, particularly the heads of institutes of higher education and of research establishments. Humanity and the biosphere are currently facing challenges to their survival not experienced for millennia. Effectively confronting these challenges is existential, and microbiologists and their learned societies have pivotal roles to play: they must step up and act now.


Asunto(s)
Microbiota , Humanos , Biotecnología/métodos , Academias e Institutos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA