Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Elife ; 132024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38314803

RESUMEN

Background: Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown. Methods: Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry. Results: We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1α levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation. Conclusions: This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR. Funding: This work was supported by the Weizmann Krenter Foundation and the Weizmann - Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, by the Minerva Foundation, by the ISF KillCorona grant 3777/19.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Humanos , Embarazo , Femenino , Ratones , Animales , Placenta/metabolismo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Trofoblastos/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo
2.
Br J Haematol ; 200(2): 249-255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36177683

RESUMEN

Erythrocytosis is associated with increased red blood cell mass and can be either congenital or acquired. Congenital secondary causes are rare and include germline variants increasing haemoglobin (Hb)-oxygen affinity (e.g., Hb or bisphosphoglycerate mutase (BPGM) variants) or affecting oxygen-sensing pathway proteins. Here, we describe five adults from three kindreds with erythrocytosis associated with heterozygosity for BPGM variants, including one novel. Functional analyses showed partial BPGM deficiency, reduced 2,3-bisphosphoglycerate levels and/or increased Hb-oxygen affinity. We also review currently known BPGM variants. This study contributes to raising awareness of BPGM variants, and in particular that heterozygosity for BPGM deficiency may already manifest clinically.


Asunto(s)
Anemia Hemolítica , Errores Innatos del Metabolismo , Policitemia , Adulto , Humanos , Bisfosfoglicerato Mutasa/genética , Policitemia/congénito , Heterocigoto , Hemoglobinas , Oxígeno
3.
PLoS Biol ; 19(6): e3001239, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138843

RESUMEN

Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.


Asunto(s)
Vías Auditivas/fisiopatología , Disfunción Cognitiva/metabolismo , Eritrocitos/metabolismo , Hipoxia/metabolismo , Receptor de Adenosina A2B/metabolismo , 2,3-Difosfoglicerato/metabolismo , Envejecimiento/patología , Animales , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Cóclea/fisiopatología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Activación Enzimática , Eliminación de Gen , Glucólisis , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/fisiopatología , Inflamación/complicaciones , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Receptor de Adenosina A2B/deficiencia
4.
J Assist Reprod Genet ; 38(6): 1363-1372, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34052998

RESUMEN

PURPOSE: Oxygen is vital for oocyte maturation; however, oxygen regulation within ovarian follicles is not fully understood. Hemoglobin is abundant within the in vivo matured oocyte, indicating potential function as an oxygen regulator. However, hemoglobin is significantly reduced following in vitro maturation (IVM). The molecule 2,3-bisphosphoglycerate (2,3-BPG) is essential in red blood cells, facilitating release of oxygen from hemoglobin. Towards understanding the role of 2,3-BPG in the oocyte, we characterized gene expression and protein abundance of bisphosphoglycerate mutase (Bpgm), which synthesizes 2,3-BPG, and whether this is altered under low oxygen or hemoglobin addition during IVM. METHODS: Hemoglobin and Bpgm expression within in vivo matured human cumulus cells and mouse cumulus-oocyte complexes (COCs) were evaluated to determine physiological levels of Bpgm. During IVM, Bpgm gene expression and protein abundance were analyzed in the presence or absence of low oxygen (2% and 5% oxygen) or exogenous hemoglobin. RESULTS: The expression of Bpgm was significantly lower than hemoglobin when mouse COCs were matured in vivo. Following IVM at 20% oxygen, Bpgm gene expression and protein abundance were significantly higher compared to in vivo. At 2% oxygen, Bpgm was significantly higher compared to 20% oxygen, while exogenous hemoglobin resulted in significantly lower Bpgm in the COC. CONCLUSION: Hemoglobin and 2,3-BPG may play a role within the maturing COC. This study shows that IVM increases Bpgm within COCs compared to in vivo. Decreasing oxygen concentration and the addition of hemoglobin altered Bpgm, albeit not to levels observed in vivo.


Asunto(s)
Bisfosfoglicerato Mutasa/genética , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/crecimiento & desarrollo , Oogénesis/genética , 2,3-Difosfoglicerato/sangre , Animales , Bisfosfoglicerato Mutasa/sangre , Blastocisto/metabolismo , Células del Cúmulo , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Meiosis/genética , Ratones , Folículo Ovárico/crecimiento & desarrollo
5.
Eur J Haematol ; 107(1): 29-37, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33840141

RESUMEN

Erythrocytosis, or increased red cell mass, may be labeled as primary or secondary, depending on whether the molecular defect is intrinsic to the red blood cells/their precursors or extrinsic to them, the latter being typically associated with elevated erythropoietin (EPO) levels. Inherited/congenital erythrocytosis (CE) of both primary and secondary types is increasingly recognized as the cause in many patients in whom acquired, especially neoplastic causes have been excluded. During the past two decades, the underlying molecular mechanisms of CE are increasingly getting unraveled. Gain-in-function mutations in the erythropoietin receptor gene were among the first to be characterized in a disorder termed primary familial and congenital polycythemia. Another set of mutations affect the components of the oxygen-sensing pathway. Under normoxic conditions, the hypoxia-inducible factor (HIF), upon hydroxylation by the prolyl-4-hydroxylase domain protein 2 (PHD2) enzyme, is degraded by the von Hippel-Lindau protein. In hypoxic conditions, failure of prolyl hydroxylation leads to stabilization of HIF and activation of the EPO gene. CE has been found to be caused by loss-of-function mutations in VHL and PHD2/EGLN1 as well as gain-of-function mutations in HIF-2α (EPAS1), all resulting in constitutive activation of EPO signaling. Apart from these, globin gene mutations leading to formation of high oxygen affinity hemoglobins also cause CE. Rarely, bisphosphoglycerate mutate mutations, affecting the 2,3-bisphosphoglycerate levels, can increase the oxygen affinity of hemoglobin and cause CE. This narrative review examines the current mutational spectrum of CE and the distinctive pathogenetic mechanisms that give rise to this increasingly recognized condition in various parts of the world.


Asunto(s)
Mutación , Policitemia/congénito , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bisfosfoglicerato Mutasa/genética , Eritrocitos/metabolismo , Eritropoyetina/metabolismo , Hemoglobinas/química , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Oxígeno/química , Oxígeno/metabolismo , Transducción de Señal
7.
Cell Rep ; 32(12): 108170, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966787

RESUMEN

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Asunto(s)
Anemia/etiología , Anemia/prevención & control , Bisfosfoglicerato Mutasa/deficiencia , Malaria Cerebral/enzimología , Malaria Cerebral/prevención & control , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bisfosfoglicerato Mutasa/química , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Estabilidad de Enzimas , Eritrocitos/enzimología , Eritrocitos/parasitología , Eritropoyesis , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Malaria Cerebral/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Parásitos/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Policitemia
8.
Cardiovasc Toxicol ; 15(4): 377-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25575753

RESUMEN

Clinical use of doxorubicin (DOX) in cancer therapy is limited by its dose-dependent cardiotoxicity. But molecular mechanisms underlying this phenomenon have not been well defined. This study was to investigate the effect of DOX on the changes of global genomics in hearts. Acute cardiotoxicity was induced by giving C57BL/6J mice a single intraperitoneal injection of DOX (15 mg/kg). Cardiac function and apoptosis were monitored using echocardiography and TUNEL assay at days 1, 3 and 5. Myocardial glucose and ATP levels were measured. Microarray assays were used to screen gene expression profiles in the hearts at day 5, and the results were confirmed with qPCR analysis. DOX administration caused decreased cardiac function, increased cardiomyocyte apoptosis and decreased glucose and ATP levels. Microarrays showed 747 up-regulated genes and 438 down-regulated genes involved in seven main functional categories. Among them, metabolic pathway was the most affected by DOX. Several key genes, including 2,3-bisphosphoglycerate mutase (Bpgm), hexokinase 2, pyruvate dehydrogenase kinase, isoenzyme 4 and fructose-2,6-bisphosphate 2-phosphatase, are closely related to glucose metabolism. Gene co-expression networks suggested the core role of Bpgm in DOX cardiomyopathy. These results obtained in mice were further confirmed in cultured cardiomyocytes. In conclusion, genes involved in glucose metabolism, especially Bpgm, may play a central role in the pathogenesis of DOX-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos , Cardiomiopatías/genética , Doxorrubicina , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/genética , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Factores de Tiempo
9.
Best Pract Res Clin Haematol ; 27(2): 95-106, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25189721

RESUMEN

Hereditary erythrocytosis, thrombocytosis, and neutrophilia are rare inherited syndromes which exhibit Mendelian inheritance. Some patients with primary hereditary erythrocytosis exhibit a mutation in the erythropoietin receptor (EPOR) which is associated with low serum erythropoietin (EPO) levels. Secondary congenital erythrocytosis may be characterized by normal or high serum EPO levels, and is related to high oxygen affinity haemoglobin variants, mutation of the enzyme biphosphoglycerate mutase (BPGM), or defects in components of the oxygen-sensing pathway. Hereditary thrombocytosis was first linked to mutations in genes encoding thrombopoietin (THPO) or the thrombopoietin receptor, MPL. More recently, germline mutations in JAK2, distinct from JAK2 V617F, and mutation of the gelsolin gene, were uncovered in several pedigrees of hereditary thrombocytosis. Hereditary neutrophilia has been described in one family with an activating germline mutation in CSF3R. The mutational basis for most hereditary myeloproliferative disorders has yet to be identified.


Asunto(s)
Trastornos Leucocíticos/congénito , Mutación , Policitemia/congénito , Trombocitosis/genética , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Gelsolina/genética , Gelsolina/metabolismo , Expresión Génica , Hemoglobinas/metabolismo , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Trastornos Leucocíticos/diagnóstico , Trastornos Leucocíticos/genética , Trastornos Leucocíticos/metabolismo , Trastornos Leucocíticos/patología , Oxígeno/metabolismo , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Policitemia/patología , Receptores del Factor Estimulante de Colonias/genética , Receptores del Factor Estimulante de Colonias/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Transducción de Señal , Trombocitosis/diagnóstico , Trombocitosis/metabolismo , Trombocitosis/patología , Trombopoyetina/genética , Trombopoyetina/metabolismo
11.
Placenta ; 30(10): 919-22, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19733906

RESUMEN

Bisphosphoglycerate mutase (BPGM) catalyses the formation of 2,3 bisphosphoglycerate (BPG) a ligand of haemoglobin. BPG facilitates liberation of oxygen from haemoglobin at low oxygen tension enabling efficient delivery of oxygen to tissues. We describe expression of BPGM in mouse labyrinthine trophoblasts, located at the maternal-placental interface. Expression is lower in placentae of igf2(+/-) knockout mice, a widely used model of growth restriction, compared to wild type placentae. Circulating maternal BPG increased throughout gestation but this increase was less in wt mothers carrying igf2(+/-) pups than in those carrying exclusively wt pups. This reduction was observed well before term and may contribute to the low birth weight of igf2(+/-) pups. Strikingly, we also measured reductions of fetal and placental weight in wt littermates of igf2(+/-) pups compared to pups developing in an exclusively wt environment. These data suggest that placental expression of BPGM can influence maternal BPG concentrations and supports a hypothesis under which BPG synthesized in the placenta may act on maternal haemoglobin to enhance delivery of oxygen to the developing fetus.


Asunto(s)
2,3-Difosfoglicerato/sangre , Bisfosfoglicerato Mutasa/metabolismo , Desarrollo Fetal/genética , Factor II del Crecimiento Similar a la Insulina/deficiencia , Placenta/metabolismo , Animales , Bisfosfoglicerato Mutasa/genética , Femenino , Peso Fetal/genética , Eliminación de Gen , Expresión Génica/genética , Edad Gestacional , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Tamaño de los Órganos , Placenta/citología , Placenta/enzimología , Placenta/patología , Embarazo , Trofoblastos/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-19519368

RESUMEN

Glycolysis is one of the principle pathways of ATP generation in cells and is present in all cell tissues; in erythrocytes, glycolysis is the only pathway for ATP synthesis since mature red cells lack the internal structures necessary to produce the energy vital for life. Red cell deficiencies have been detected in all erythrocyte glycolytic pathways, although their frequencies differ owing to diverse causes, such as the affected enzyme and severity of clinical manifestations. The number of enzyme deficiencies known is endless. The most frequent glycolysis abnormality is pyruvate kinase deficiency, since around 500 cases are known, the first of which was reported in 1961. However, only approximately 200 cases were due to mutations. In contrast, only one case of phosphoglycerate mutase BB type mutation, described in 2003, has been detected. Most mutations are located in the coding sequences of genes, while others, missense, deletions, insertions, splice defects, premature stop codons and promoter mutations, are also frequent. Understanding of the crystal structure of enzymes permits molecular modelling studies which, in turn, reveal how mutations can affect enzyme structure and function.


Asunto(s)
Isomerasas/genética , Mutación , Transferasas/genética , Anemia Hemolítica/enzimología , Anemia Hemolítica/genética , Anemia Hemolítica Congénita no Esferocítica , Animales , Bisfosfoglicerato Mutasa/deficiencia , Bisfosfoglicerato Mutasa/genética , Eritrocitos/enzimología , Glucosa-6-Fosfato Isomerasa/genética , Glucólisis , Humanos , Isomerasas/deficiencia , Fosfoglicerato Quinasa/deficiencia , Fosfoglicerato Quinasa/genética , Fosfoglicerato Mutasa/deficiencia , Fosfoglicerato Mutasa/genética , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Transferasas/deficiencia , Triosa-Fosfato Isomerasa/deficiencia , Triosa-Fosfato Isomerasa/genética
13.
Placenta ; 27(8): 924-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16246416

RESUMEN

2,3-Bisphosphoglycerate mutase (2,3-BPGM), an erythroid-expressed enzyme, synthesises 2,3-bisphosphoglycerate (2,3-BPG), the allosteric modulator of haemoglobin. This ligand has a higher affinity for adult haemoglobin than for fetal haemoglobin and differential binding of it facilitates transfer of oxygen between adult and fetal blood by lowering the affinity of adult haemoglobin for oxygen. This paper reports the discovery that 2,3-BPGM is synthesised in non-erythroid cells of the human placenta. Western blot analysis of placental extracts revealed high levels of 2,3-BPGM in the human placenta. Immunohistochemical staining and in situ hybridisation experiments indicated that abundant 2,3-BPGM is present in the syncytiotrophoblast layer of the placental villi at the feto-maternal interface. A cytochemical staining technique showed that the placental 2,3-BPGM is active, indicating that 2,3-BPG is synthesised in the outermost cells of the placenta. These observations demonstrate an unexpected and abundant presence of an enzyme key to oxygen release from adult haemoglobin, at the interface between maternal and fetal circulations.


Asunto(s)
Bisfosfoglicerato Mutasa/análisis , Placenta/enzimología , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Western Blotting , Femenino , Humanos , Inmunohistoquímica , Hibridación in Situ , ARN Mensajero/análisis
14.
Horm Res ; 62(4): 191-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15375329

RESUMEN

OBJECTIVES: The effects of triiodothyronine (T(3)) and hypoxia on 2,3-bisphosphoglycerate (2,3-BPG) studied in vitro are unclear. To clarify these effects we selected a more physiologic approach: the in vivo study in rabbits. We also present the changes produced by T(3) and hypoxia on phosphoglycerate mutase (PGAM), which requires 2,3-BPG as a cofactor, and 2,3-BPG synthase (BPGS), the enzyme responsible for 2,3-BPG synthesis in erythroblasts and reticulocytes. METHODS: Hyperthyroidism was induced by daily T(3) injection (250 microg/kg), hypoxia by a mixture of 90% nitrogen and 10% oxygen and hypothyroidism by propylthiouracil (PTU) added to drinking water. RESULTS: Both T(3) administration and hypoxic conditions increased 2,3-BPG levels and BPGS mRNA levels and activity in erythroblasts but not in reticulocytes. Unlike BPGS, both PGAM mRNA levels and activity were increased in erythroblasts and reticulocytes under hyperthyrodism and hypoxia. The antihormone PTU produced opposite effects to T(3). CONCLUSION: The results presented here suggest that both hyperthyroidism and hypoxia modulate in vivo red cell 2,3-BPG content by changes in the expression of BPGS. Similarly, the changes in PGAM activity are also explained by changes in its expression.


Asunto(s)
2,3-Difosfoglicerato/metabolismo , Bisfosfoglicerato Mutasa/metabolismo , Eritroblastos/metabolismo , Hipoxia/metabolismo , Fosfoglicerato Mutasa/metabolismo , Reticulocitos/metabolismo , Triyodotironina/farmacología , 2,3-Difosfoglicerato/sangre , Animales , Bisfosfoglicerato Mutasa/sangre , Bisfosfoglicerato Mutasa/genética , Hipertiroidismo/sangre , Hipertiroidismo/inducido químicamente , Hipertiroidismo/metabolismo , Hipoxia/sangre , Masculino , Fosfoglicerato Mutasa/sangre , Fosfoglicerato Mutasa/genética , ARN Mensajero/sangre , ARN Mensajero/metabolismo , Conejos
15.
Am J Hematol ; 75(4): 205-8, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15054810

RESUMEN

A 28-year-old asymptomatic male of Iranian Jewish (Meshadi) heritage was found on routine exam to have an erythrocytosis (RBC = 6.22 x 10(12)/l, Hgb = 19.2 g/dl, Hct = 58.9%). Splenomegaly was absent on physical exam. There was no family history of erythrocytosis. His oxygen dissociation curve was left-shifted with a p50 of 19 mmHg (normal = 25-32 mmHg). Hemoglobin electrophoresis showed no abnormalities. DNA sequencing of the hemoglobin beta globin gene and both alpha globin genes did not reveal a mutation. A 2,3-bisphosphoglycerate (BPG) level was markedly decreased at 0.3 micromol/g Hb (normal = 11.4-19.4 micromol/g Hb). The patient's bisphosphoglycerate mutase (BPGM) enzyme activity was also markedly decreased at 0.16 IU/g Hb (normal = 4.13-5.43 IU/g Hb). A red cell enzyme panel revealed a markedly decreased G-6-PD level (0.3 U/g Hb, normal = 8.6-18.6 U/g Hb). His parents and a brother were also available for evaluation. Both parents showed normal 2,3-BPG levels but BPGM activity approximately 50% of normal. Paradoxically, the brother showed normal BPGM activity but a slightly decreased 2,3-BPG level. All family members had markedly decreased G-6-PD activity. DNA sequencing of the BPGM gene showed the propositus to be homozygous for 185 G-->A, Arg 62 Gln in exon 2. Thus, the erythrocytosis in this patient is secondary to low 2,3-BPG levels, due to a deficiency in BPG mutase. This appears due to consanguinity within this family.


Asunto(s)
Bisfosfoglicerato Mutasa/deficiencia , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Policitemia/etiología , Adulto , Bisfosfoglicerato Mutasa/sangre , Bisfosfoglicerato Mutasa/genética , Eritrocitos/metabolismo , Eritrocitos/patología , Humanos , Masculino , Oxígeno/sangre , Padres , Policitemia/sangre , Policitemia/enzimología , Policitemia/genética , Hermanos
18.
Mol Aspects Med ; 17(2): 143-70, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8813716

RESUMEN

Red blood cells can only fulfil their functions over the normal period of approximately 120 days with 1.7 x 10(5) circulatory cycles efficiently if they withstand external and internal loads. This requires ATP and redox equivalents, which have to be permanently regenerated by the energy and redox metabolism. These pathways are necessary to maintain the biconcave shape of the cells, their specific intracellular cation concentrations, the reduced state of hemoglobin with a divalent iron and the sulfhydryl groups of enzymes, glutathione and membrane components. If an enzyme deficiency of one of these metabolic pathways limits the ATP and/or NADPH production, distinct membrane alterations result causing a removal of the damaged cells by the monocyte-macrophage system. Most metabolic needs of erythrocytes are covered by glycolysis, the oxidative pentose phosphate pathway (OPPP), the glutathione cycle, nucleotide metabolism and MetHb reductase. Hereditary enzyme deficiencies of all these pathways have been identified; those that cause non-spherocytic hemolytic anemia are listed in Table 4. Their frequencies differ markedly both with respect to the affected enzyme and geographic distribution. Glucose-6-phosphate dehydrogenase enzymopathies (G6PD) are with more than 400 million cases by far the most common deficiency. The highest gene frequency has been found with 0.7 among Kurdish Jews. G6PD deficiencies are furthermore prevalent with frequencies of about 0.1 among Africans, Black Americans, and populations of Mediterranean countries and South East Asia. In Middle and Northern Europe the frequency of G6PD is much lower, and with approximately 0.0005, comparable with the frequency of pyruvate kinase (PK) enzymopathies, the most frequent enzyme deficiency in glycolysis in this area (Luzzatto, 1987; Beutler and Kuhl, 1990). The relationship between the degree of enzyme deficiency and the extent of metabolic dysfunction in red blood cells and other tissues depend on several factors: on the importance of the affected enzyme; its expression rate; the stability of the mutant enzyme against proteolytic degradation and functional abnormalities; the possibility to compensate the deficiency by an overexpression of the corresponding isoenzyme or by the use of an alternative metabolic pathway. Difficulties in estimating the quantitative degree of disorder in severe cases are due to the fact that these populations contain many reticulocytes, which generally have higher enzyme activities and concentrations of intermediates than erythrocytes. An alternative approach to predict metabolic changes is the analysis by mathematical modeling. Mathematical modeling of the main metabolic pathways of human erythrocytes has reached an advanced level (Rapoport et al., 1976; Holzhütter et al., 1985; Schuster et al., 1988). Models have been successfully employed to describe stationary and time-dependent metabolic states of the cell under normal conditions as well as in the presence of enzyme deficiencies. Figure 5 shows computational results of erythrocyte enzyme deficiencies. This analysis is based on the comprehensive mathematical model of the energy and redox metabolism for human erythrocyte presented in Fig. 6. Stationary states of the cell metabolism have been calculated by varying the activity of each of the participating enzymes by several orders of magnitude. To predict consequences of enzyme deficiencies a performance function has been introduced (Schuster and Holzhütter, 1995). It takes into account the homeostasis of three essential metabolic variables: the energetic state (ATP), the reductive capacity (reduced glutathione) and the osmotic state. From the data given in Fig. 5 one can conclude that generally the metabolic impairment resulting in deficiencies occurs earlier for enzymes with high control coefficients than for those catalyzing equilibrium reactions. On the other hand the flux curves of latter enzymes decrease more steeply below a critica


Asunto(s)
Anemia Hemolítica/fisiopatología , Eritrocitos/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Anemia Hemolítica/terapia , Anemia Hemolítica Congénita no Esferocítica , Bisfosfoglicerato Mutasa/deficiencia , Bisfosfoglicerato Mutasa/genética , Metabolismo Energético , Eritrocitos/metabolismo , Genética de Población , Glucosa-6-Fosfato Isomerasa/genética , Glutatión/metabolismo , Hexoquinasa/deficiencia , Hexoquinasa/genética , Humanos , Cinética , Malaria , Mutación/genética , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Fosfofructoquinasa-1/deficiencia , Fosfofructoquinasa-1/genética , Polimorfismo Genético/genética , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Triosa-Fosfato Isomerasa/deficiencia , Triosa-Fosfato Isomerasa/genética
19.
J Bacteriol ; 175(13): 3926-33, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8320209

RESUMEN

Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.


Asunto(s)
Bisfosfoglicerato Mutasa/genética , Genes Bacterianos/genética , Zymomonas/genética , 2,3-Difosfoglicerato , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Secuencia de Bases , Bisfosfoglicerato Mutasa/biosíntesis , Clonación Molecular , Secuencia Conservada , Ácidos Difosfoglicéricos/metabolismo , Escherichia coli/genética , Glucólisis , Hidroxiácidos/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Proteínas Recombinantes/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética , Zymomonas/enzimología
20.
Eur J Biochem ; 213(1): 493-500, 1993 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-8477721

RESUMEN

Human bisphosphoglycerate mutase (GriP2 mutase) is a trifunctional enzyme which synthesizes and degrades GriP2 in red cells. Among the amino acid residues involved in its active site there are two conserved histidine residues, His10 which is phosphorylated during the catalytic process and His187 for which only speculative data have been made about the potential role during the reactions. Another amino acid residue, Arg89, had not been described as part of this active site but we have recently shown that a natural mutant Arg89-->Cys was highly thermolabile and showed severe perturbations of its enzymatic properties. To understand better the exact role of these residues, replacements of His10 by Gly (H10G) or Asp (H10D), His187 by Asn (H187N), Tyr (H187Y) or Asp (H187D) and Arg89 by Cys (R89C), Ser (R89S), Gly (R89G) or Lys (R89K) were performed by site-directed mutagenesis. The results obtained in this report show that replacement of the His10 residue completely abolished the enzymatic activities. Concerning the His187 residue, our results afford arguments that it plays an essential role in the three catalytic activities. Indeed all these activities are abolished in the two H187Y and H187D variants, whereas they are detectable though strongly diminished, for the H187N variant. In addition mutations at His187 could be distinguishable from those at His10 since the former resulted in a thermolabile enzyme, whereas no significant change in heat stability was observed for the latter. It is noteworthy that the H187N variant is protected against thermal instability by glycerate 2,3-bisphosphate (GriP2). Concerning the Arg89 mutants, R89C, R89S and R89G, the three variants showed characteristics identical to those found in the natural R89C mutant, i.e. loss of 99% of synthase activity, consistent decrease of mutase and 2-phosphoglycolate-stimulated phosphatase activities whereas the unstimulated phosphatase activity was normal. Moreover these mutants were unstable at 55 degrees C but GriP2 was able to protect them against thermal instability. In contrast, the R89K mutant was stable at 55 degrees C. Its synthase and unstimulated phosphatase activities were normal but its mutase and 2-phosphoglycolate-stimulated phosphatase activities were decreased. In addition, Km values for monophosphoglycerates were increased (3.2-fold) in the synthase but normal in mutase activities, whereas Km values for GriP2 were normal in mutase and phosphatase activities.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Arginina/metabolismo , Bisfosfoglicerato Mutasa/metabolismo , Eritrocitos/enzimología , Histidina/metabolismo , Secuencia de Bases , Sitios de Unión , Bisfosfoglicerato Mutasa/química , Bisfosfoglicerato Mutasa/genética , Catálisis , Estabilidad de Enzimas , Calor , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA