Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Physiol Plant ; 176(4): e14432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981735

RESUMEN

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Asunto(s)
Botrytis , Brassica , Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Botrytis/fisiología , Botrytis/patogenicidad , Ciclopentanos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Brassica/microbiología , Brassica/genética , Brassica/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892087

RESUMEN

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Asunto(s)
Botrytis , Péptido Sintasas , Sintasas Poliquetidas , Metabolismo Secundario , Botrytis/genética , Botrytis/patogenicidad , Metabolismo Secundario/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biología Computacional/métodos , Familia de Multigenes , Genes Fúngicos
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928507

RESUMEN

The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.


Asunto(s)
Botrytis , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Interferencia de ARN , Botrytis/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Interacciones Huésped-Patógeno/genética , Fungicidas Industriales/farmacología
4.
PLoS One ; 19(6): e0304790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875250

RESUMEN

In plants, small RNAs (sRNAs), mainly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have been described as key regulators of plant development, growth, and abiotic and biotic responses. Despite reports indicating the involvement of certain sRNAs in regulating the interaction between Botrytis cinerea (a major necrotrophic fungal phytopathogen) and host plants, there remains a lack of analysis regarding the potential regulatory roles of plant sRNAs during early stages of the interaction despite early immune responses observed then during infection. We present the first transcriptome-wide analysis of small RNA expression on the early interaction between the necrotrophic fungus Botrytis cinerea and the model plant Arabidopsis thaliana. We found that evolutionary conserved A. thaliana miRNAs were the sRNAs that accumulated the most in the presence of B. cinerea. The upregulation of miR167, miR159 and miR319 was of particular interest because these, together with their target transcripts, are involved in the fine regulation of the plant hormone signaling pathways. We also describe that miR173, which triggers the production of secondary siRNAs from TAS1 and TAS2 loci, as well as secondary siRNAs derived from these loci, is upregulated in response to B. cinerea. Thus, at an early stage of the interaction there are transcriptional changes of sRNA-guided silencing pathway genes and of a subset of sRNAs that targeted genes from the PPR gene superfamily, and these may be important mechanisms regulating the interaction between A. thaliana and B. cinerea. This work provides the basis for a better understanding of the regulation mediated by sRNAs during early B. cinerea-plant interaction and may help in the development of more effective strategies for its control.


Asunto(s)
Arabidopsis , Botrytis , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , MicroARNs , ARN de Planta , Botrytis/genética , Botrytis/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , MicroARNs/genética , MicroARNs/metabolismo , Interacciones Huésped-Patógeno/genética , ARN de Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Perfilación de la Expresión Génica
5.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940906

RESUMEN

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Asunto(s)
Biopelículas , Botrytis , Fragaria , Proteínas Fúngicas , Hifa , Proteínas de la Membrana , Enfermedades de las Plantas , Botrytis/patogenicidad , Botrytis/genética , Botrytis/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Virulencia , Hifa/crecimiento & desarrollo , Hifa/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Fragaria/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Vitis/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Eliminación de Gen
6.
Mol Plant ; 17(7): 1073-1089, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38807367

RESUMEN

The gray mold fungus Botrytis cinerea is a necrotrophic pathogen that causes diseases in hundreds of plant species, including high-value crops. Its polyxenous nature and pathogenic success are due to its ability to perceive host signals in its favor. In this study, we found that laticifer cells of Euphorbia lathyris are a source of susceptibility factors required by B. cinerea to cause disease. Consequently, poor-in-latex (pil) mutants, which lack laticifer cells, show full resistance to this pathogen, whereas lot-of-latex mutants, which produce more laticifer cells, are hypersusceptible. These S factors are triterpenoid saponins, which are widely distributed natural products of vast structural diversity. The downregulation of laticifer-specific oxydosqualene cyclase genes, which encode the first committed step enzymes for triterpene and, therefore, saponin biosynthesis, conferred disease resistance to B. cinerea. Likewise, the Medicago truncatula lha-1 mutant, compromised in triterpenoid saponin biosynthesis, showed enhanced resistance. Interestingly, the application of different purified triterpenoid saponins pharmacologically complemented the disease-resistant phenotype of pil and hla-1 mutants and enhanced disease susceptibility in different plant species. We found that triterpenoid saponins function as plant cues that signal transcriptional reprogramming in B. cinerea, leading to a change in its growth habit and infection strategy, culminating in the abundant formation of infection cushions, the multicellular appressoria apparatus dedicated to plant penetration and biomass destruction in B. cinerea. Taken together, these results provide an explanation for how plant triterpenoid saponins function as disease susceptibility factors to promote B. cinerea pathogenicity.


Asunto(s)
Botrytis , Enfermedades de las Plantas , Saponinas , Triterpenos , Botrytis/patogenicidad , Saponinas/farmacología , Saponinas/metabolismo , Enfermedades de las Plantas/microbiología , Triterpenos/metabolismo , Triterpenos/farmacología , Euphorbia/microbiología , Euphorbia/metabolismo , Resistencia a la Enfermedad/genética , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Medicago truncatula/genética , Mutación , Regulación de la Expresión Génica de las Plantas
7.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724915

RESUMEN

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Tulipa , Enfermedades de las Plantas/microbiología , Fusarium/patogenicidad , Tulipa/microbiología , Botrytis/patogenicidad , Penicillium chrysogenum/patogenicidad , Aspergillus niger/patogenicidad , Virulencia , Raíces de Plantas/microbiología
8.
Gene ; 923: 148588, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38763363

RESUMEN

Polygalacturonase inhibitor protein (PGIP) restricts fungal growth and colonization and functions in plant immunity. Gray mold in cucumber is a common fungal disease caused by Botrytis cinerea, and is widespread and difficult to control in cucumber (Cucumis sativus L.) production. In this study, Cucumis sativus polygalacturonase-inhibiting protein 2 (CsPGIP2) was found to be upregulated in response to gray mold in cucumber. CsPGIP2 was detected in the endoplasmic reticulum, cell membrane, and cell wall after transient transformation of protoplasts and tobacco. A possible interaction between Botrytis cinerea polygalacturonase 3 (BcPG3) and CsPGIP2 was supported by protein interaction prediction and BiFC analysis. Transgenic Arabidopsis plants expressing CsPGIP2 were constructed and exhibited smaller areas of gray mold infection compared to wild type (WT) plants after simultaneous inoculation. Evans blue dye (EBD) confirmed greater damage for WT plants, with more intense dyeing than for the transgenic Arabidopsis. Interestingly, compared to WT, transgenic Arabidopsis exhibited higher superoxide dismutase (AtSOD1) expression, antioxidant enzyme activities, lignin content, net photosynthetic rate (Pn), and photochemical activity. Our results suggest that CsPGIP2 stimulates a variety of plant defense mechanisms to enhance transgenic Arabidopsis resistance against gray mold disease.


Asunto(s)
Arabidopsis , Botrytis , Cucumis sativus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Cucumis sativus/microbiología , Cucumis sativus/genética , Cucumis sativus/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Physiol Plant ; 176(2): e14309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659152

RESUMEN

Although microRNAs (miRNAs) regulate the defense response of a variety of plant species against a variety of pathogenic fungi, the involvement of miRNAs in mulberry's defense against Botrytis cinerea has not yet been documented. In this study, we identified responsive B. cinerea miRNA mno-miR164a in mulberry trees. After infection with B. cinerea, the expression of mno-miR164a was reduced, which was fully correlated with the upregulation of its target gene, MnNAC100, responsible for encoding a transcription factor. By using transient infiltration/VIGS mulberry that overexpressed mno-miR164a or knocked-down MnNAC100, our study revealed a substantial enhancement in mulberry's resistance to B. cinerea when mno-miR164a was overexpressed or MnNAC100 expression was suppressed. This enhancement was accompanied by increased catalase (CAT) activity and reduced malondialdehyde (MDA) content. In addition, mno-miR164a-mediated inhibition of MnNAC100 enhanced the expression of a cluster of defense-related genes in transgenic plants upon exposure to B. cinerea. Meanwhile, MnNAC100 acts as a transcriptional repressor, directly suppressing the expression of MnPDF1.2. Our study indicated that the mno-miR164a-MnNAC100 regulatory module manipulates the defense response of mulberry to B. cinerea infection. This discovery has great potential in breeding of resistant varieties and disease control.


Asunto(s)
Botrytis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , MicroARNs , Morus , Enfermedades de las Plantas , Proteínas de Plantas , Morus/genética , Morus/microbiología , Botrytis/fisiología , Botrytis/patogenicidad , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Malondialdehído/metabolismo
10.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516730

RESUMEN

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Enfermedades de las Plantas , Tylenchoidea , Animales , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/parasitología , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/parasitología , Nicotiana/inmunología , Nicotiana/metabolismo , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Botrytis/fisiología , Botrytis/patogenicidad , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/genética , Inmunidad de la Planta , Interacciones Huésped-Parásitos , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética
11.
Mol Plant Pathol ; 24(8): 849-865, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37026690

RESUMEN

TATA box-binding protein (TBP)-associated factor 14 (Taf14), a transcription-associated factor containing a conserved YEATS domain and an extra-terminal (ET) domain, is a multifunctional protein in Saccharomyces cerevisiae. However, the role of Taf14 in filamentous phytopathogenic fungi is not well understood. In this study, the homologue of ScTaf14 in Botrytis cinerea (named BcTaf14), a destructive phytopathogen causing grey mould, was investigated. The BcTaf14 deletion strain (ΔBcTaf14) showed pleiotropic defects, including slow growth, abnormal colony morphology, reduced conidiation, abnormal conidial morphology, reduced virulence, and altered responses to various stresses. The ΔBcTaf14 strain also exhibited differential expression of numerous genes compared to the wild-type strain. BcTaf14 could interact with the crotonylated H3K9 peptide, and mutation of two key sites (G80 and W81) in the YEATS domain disrupted this interaction. The mutation of G80 and W81 affected the regulatory effect of BcTaf14 on mycelial growth and virulence but did not affect the production and morphology of conidia. The absence of the ET domain at the C-terminus rendered BcTaf14 unable to localize to the nucleus, and the defects of ΔBcTaf14 were not recovered to wild-type levels when BcTaf14 without the ET domain was expressed. Our results provide insight into the regulatory roles of BcTaf14 and its two conserved domains in B. cinerea and will be helpful for understanding the function of the Taf14 protein in plant-pathogenic fungi.


Asunto(s)
Botrytis , Proteínas Fúngicas , Factores Asociados con la Proteína de Unión a TATA , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Virulencia , Factores Asociados con la Proteína de Unión a TATA/genética , Filogenia , Regulación Fúngica de la Expresión Génica
12.
Gene ; 815: 146130, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35017035

RESUMEN

Maf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth. Accordingly, Maf1 is found in some organisms to influence growth and/or stress survival. Because of their sessile nature, plants are especially vulnerable to environmental changes and molecular adaptations that enhance growth under benign circumstances can increase sensitivity to external challenges. We tested if Maf1 depletion in the model plant Arabidopsis affects growth, pathogen resistance and tolerance of drought or soil salinity, a common physiological challenge that imposes both osmotic and ionic stress. We find that disruption of the Maf1 gene or RNAi-mediated depletion of its transcript is well-tolerated and confers a modest growth advantage without compromising resistance to common biotic and abiotic challenges.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Dominio MADS/genética , Estrés Fisiológico/genética , Arabidopsis/crecimiento & desarrollo , Botrytis/patogenicidad , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , Salinidad , Suelo/química
13.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-35092410

RESUMEN

Plant hormones regulate growth, development, and defense against biotic and abiotic stresses. Salicylic acid (SA), ethylene (ET), and jasmonate (JA) are major phytohormones that control the defense against pathogens. SA and JA primarily regulate resistance against biotrophic and necrotrophic pathogens, respectively. NPR1 is the key regulator of SA signaling in plants. AtOZF1 function has recently been ascribed to promote both NPR1- dependent and -independent SA signaling. However, the role of AtOZF1 in JA signaling was not known. Here we report AtOZF1 as a positive regulator of JA signaling in Arabidopsis. The atozf1 mutants are more susceptible to the necrotrophic pathogen Botrytis cinerea than wildtype (WT) plants. AtOZF1 positively regulates the expression of JA inducible genes like PDF1.2, VSP2, THI2.1, and ORA59. AtOZF1 takes part in SA-JA cross-talk to an extent similar to that of NPR1. AtOZF1 is essential for the activation of PDF1.2 expression upon exogenous methyl-jasmonate (MeJA) application. Intriguingly, SA can significantly promote MeJA-induced PDF1.2 expression in the absence of AtOZF1. Altogether our results reveal a novel SA-JA interaction pathway in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de la Membrana/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Ciclopentanos/farmacología , Defensinas/genética , Defensinas/metabolismo , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Mutación , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal
14.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639149

RESUMEN

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Asunto(s)
Arabidopsis/inmunología , Botrytis/patogenicidad , Resistencia a la Enfermedad/inmunología , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/enzimología , Nicotiana/inmunología , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
15.
mBio ; 12(5): e0306820, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663100

RESUMEN

Cytokinin (CK) is an important plant developmental regulator, having activities in many aspects of plant life and response to the environment. CKs are involved in diverse processes in the plant, including stem cell maintenance, vascular differentiation, growth and branching of roots and shoots, leaf senescence, nutrient balance, and stress tolerance. In some cases, phytopathogens secrete CKs. It has been suggested that to achieve pathogenesis in the host, CK-secreting biotrophs manipulate CK signaling to regulate the host cell cycle and nutrient allocation. CK is known to induce host plant resistance to several classes of phytopathogens from a few works, with induced host immunity via salicylic acid signaling suggested to be the prevalent mechanism for this host resistance. Here, we show that CK directly inhibits the growth, development, and virulence of fungal phytopathogens. Focusing on Botrytis cinerea (Bc), we demonstrate that various aspects of fungal development can be reversibly inhibited by CK. We also found that CK affects both budding and fission yeast in a similar manner. Investigating the mechanism by which CK influences fungal development, we conducted RNA next-generation sequencing (RNA-NGS) on mock- and CK-treated B. cinerea samples, finding that CK alters the cell cycle, cytoskeleton, and endocytosis. Cell biology experiments demonstrated that CK affects cytoskeleton components and cellular trafficking in Bc, lowering endocytic rates and endomembrane compartment sizes, likely leading to reduced growth rates and arrested developmental programs. Mutant analyses in yeast confirmed that the endocytic pathway is altered by CK. Our work uncovers a remarkably conserved role for a plant growth hormone in fungal biology, suggesting that pathogen-host interactions resulted in fascinating molecular adaptations on fundamental processes in eukaryotic biology. IMPORTANCE Cytokinins (CKs), important plant growth/developmental hormones, have previously been associated with host disease resistance. Here, we demonstrate that CK directly inhibits the growth, development, and virulence of B. cinerea (Bc) and many additional phytopathogenic fungi. Molecular and cellular analyses revealed that CK is not toxic to Bc, but rather, Bc likely recognizes CK and responds to it, resulting in cell cycle and individual cell growth retardation, via downregulation of cytoskeletal components and endocytic trafficking. Mutant analyses in yeast confirmed that the endocytic pathway is a CK target. Our work demonstrates a conserved role for CK in yeast and fungal biology, suggesting that pathogen-host interactions may cause molecular adaptations in fundamental processes in eukaryotic biology.


Asunto(s)
Citocininas/farmacología , Citoesqueleto/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Interacciones Huésped-Patógeno/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Ciclo Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Resistencia a la Enfermedad , Hongos/genética , Hongos/patogenicidad , Reguladores del Crecimiento de las Plantas , Patología de Plantas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Virulencia
16.
BMC Plant Biol ; 21(1): 496, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34706648

RESUMEN

BACKGROUND: Plant miRNAs are involved in the response to biotic and abiotic stresses by altering their expression levels, and they play an important role in the regulation of plant resistance to stress. However, the molecular mechanism that regulates the expression levels of miRNAs in plants with biotic and abiotic stress still needs to be explored. Previously, we found that the expression of the miR482 family was changed in tomato infected by Botrytis cinerea. In this study, we investigated and uncovered the mechanism underlying the response of miR482 to B. cinerea infection in tomato. RESULTS: First, RT-qPCR was employed to detect the expression patterns of miR482b in tomato infected by B. cinerea, and results showed that miR482b primary transcripts (pri-miR482b) were up-regulated in B. cinerea-infected leaves, but the mature miR482b was down-regulated. Subsequently, we used rapid amplification cDNA end method to amplify the full-length of pri-miR482b. Result showed that the pri-miR482b had two isoforms, with the longer one (consisting 300 bp) having an extra fragment of 53 bp in the 3'-end compared with the shorter one. In vitro Dicer assay indicated that the longer isoform pri-miR482b-x1 had higher efficiency in the post-transcriptional splicing of miRNA than the shorter isoform pri-miR482b-x2. In addition, the transcription level of mature miR482b was much higher in transgenic Arabidopsis overexpressing pri-miR482b-x1 than that in OE pri-miR482b-x2 Arabidopsis. These results confirmed that this extra 53 bp in pri-miR482b-x1 might play a key role in the miR482b biogenesis of post-transcription processing. CONCLUSIONS: Extra 53 bp in pri-miR482b-x1 enhanced miR482b biogenesis, which elevated the transcription level of miR482b. This study clarified the response of miR482 to B. cinerea infection in tomato, thereby helping us further understand the molecular mechanisms that regulate the expression levels of other miRNAs.


Asunto(s)
Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , MicroARNs/genética , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Enfermedades de las Plantas/microbiología
17.
J Plant Physiol ; 266: 153533, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34601339

RESUMEN

The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.


Asunto(s)
Botrytis/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Oxilipinas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-34520340

RESUMEN

The fungal pathogen Botrytis cinerea is the causal agent of devastating gray mold diseases in many economically important fruits, vegetables, and flowers, leading to serious economic losses worldwide. In this study, a novel actinomycete NEAU-LD23T exhibiting antifungal activity against B. cinerea was isolated, and its taxonomic position was evaluated using a polyphasic approach. Based on the genotypic, phenotypic and chemotaxonomic data, it is concluded that the strain represents a novel species within the genus Streptomyces, for which the name Streptomyces botrytidirepellens sp. nov. is proposed. The type strain is NEAU-LD23T (=CCTCC AA 2019029T=DSM 109824T). In addition, strain NEAU-LD23T showed a strong antagonistic effect against B. cinerea (82.6±2.5%) and varying degrees of inhibition on nine other phytopathogenic fungi. Both cell-free filtrate and methanol extract of mycelia of strain NEAU-LD23T significantly inhibited mycelial growth of B. cinerea. To preliminarily explore the antifungal mechanisms, the genome of strain NEAU-LD23T was sequenced and analyzed. AntiSMASH analysis led to the identification of several gene clusters responsible for the biosynthesis of bioactive secondary metabolites with antifungal activity, including 9-methylstreptimidone, echosides, anisomycin, coelichelin and desferrioxamine B. Overall, this research provided us an excellent strain with considerable potential to use for biological control of tomato gray mold.


Asunto(s)
Antibiosis , Botrytis/patogenicidad , Filogenia , Streptomyces , Técnicas de Tipificación Bacteriana , Composición de Base , Agentes de Control Biológico , ADN Bacteriano/genética , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/clasificación , Streptomyces/aislamiento & purificación
19.
Viruses ; 13(7)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34372522

RESUMEN

Eukaryotic circular single-stranded DNA (ssDNA) viruses were known only to infect plants and vertebrates until the discovery of the isolated DNA mycovirus from the fungus Sclerotinia sclerotiorum. Similar viral sequences were reported from several other sources and classified in ten genera within the Genomoviridae family. The current study reports two circular ssDNA mycoviruses isolated from the phytopathogen Botrytis cinerea, and their assignment to a newly created genus tentatively named Gemydayirivirus. The mycoviruses, tentatively named botrytis gemydayirivirus 1 (BGDaV1) and BGDaV2, are 1701 and 1693 nt long and encode three and two open reading frames (ORFs), respectively. Of the predicted ORFs, only ORF I, which codes for a replication initiation protein (Rep), shared identity with other proteins in GenBank. BGDaV1 is infective as cell-free purified particles and confers hypovirulence on its natural host. Investigation revealed that BGDaV1 is a target for RNA silencing and genomic DNA methylation, keeping the virus at very low titre. The discovery of BGDaV1 expands our knowledge of the diversity of genomoviruses and their interaction with fungal hosts.


Asunto(s)
Botrytis/genética , Botrytis/virología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Botrytis/patogenicidad , Virus ADN/clasificación , Virus ADN/patogenicidad , Virus Fúngicos/clasificación , Virus Fúngicos/patogenicidad , Genoma Viral , Interacciones Microbiota-Huesped , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética , Virulencia
20.
Plant J ; 108(3): 690-704, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34396619

RESUMEN

The phytohormones jasmonates (JAs) control plant development, growth, and defense against insects and pathogens. The Arabidopsis JA receptor Coronatine Insensitive 1 (COI1) interacts with ARABIDOPSIS SKP-LIKE1 (ASK1)/ASK2 to form the SCFCOI1 E3 ligase and mediate JA responses. Here, we performed a genetic suppressor screen using the leaky coi1-2 (COI1Leu245Phe ) mutant for restored sensitivity to JA, and identified the intragenic suppressor mutation Leu59Phe, which was in the region connecting the F-box and leucine-rich repeats domains of COI1. The L59F substitution not only restores the COI1L245F function, but also the COI1Gly434Glu (coi1-22rsp ) function in JA responses, through recovering their interactions with ASK1 or ASK2 and their protein levels. The L59F change itself could not enhance the interactions between COI1 and ASK1/2, nor affect JA responses. The present study reveals that the Leu59Phe substitution compensates for the effect of some deleterious mutations in the JA receptor COI1.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Supresión Genética , Sustitución de Aminoácidos , Animales , Antocianinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Ciclopentanos/farmacología , Resistencia a la Enfermedad/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Herbivoria , Oxilipinas/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA