Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 902
Filtrar
1.
J Agric Food Chem ; 72(37): 20646-20657, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231315

RESUMEN

Plants have complex detoxification and metabolic systems that enable them to deal with environmental pollutants. We report accumulation of the pesticide isoproturon (IPU) in a BR signaling pathway for mutant bzr4-3/5 rice to be significantly higher than in wild-type (WT) rice controls and for exogenous 24-epibrassinolide to reverse toxic symptoms in WT rice but not in mutants. A genome-wide RNA sequencing study of WT/bzr4 rice is performed to identify transcriptomic changes and metabolic mechanisms under IPU exposure. Three differentially expressed genes in yeast cells increase the degradation rate of IPU in a growth medium by factors of 1.61, 1.51, and 1.29 after 72 h. Using UPLC/Q-TOF-MS/MS, five phase I metabolites and five phase II conjugates are characterized in rice grains, with concentrations generally decreasing in bzr4 rice grains. OsBZR4, a regulator of IPU degradation in rice, may eliminate IPU from edible parts of food crops by regulating downstream metabolic genes.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Oryza , Compuestos de Fenilurea , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/química , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Herbicidas/farmacología , Herbicidas/metabolismo , Herbicidas/química , Espectrometría de Masas en Tándem , Resistencia a los Herbicidas/genética
2.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273509

RESUMEN

The Bax inhibitor-1 (BI-1) gene family, which is important for plant growth, development, and stress tolerance, remains largely unexplored in cauliflower. In this study, we identified and characterized cauliflower BI-1 family genes. Based on aligned homologous sequences and collinearity with Arabidopsis genes, we identified nine cauliflower BI-1 genes, which encode proteins that varied in length, molecular weight, isoelectric point, and predicted subcellular localization, including the Golgi apparatus, plasma membrane, and various compartments within the chloroplast. Phylogenetic analyses detected evolutionary conservation and divergence among these genes. Ten structural motifs were identified, with Motif 5 found to be crucial for inhibiting apoptosis. According to the cis-regulatory elements in their promoters, these genes likely influence hormone signaling and stress responses. Expression profiles among tissues highlighted the functional diversity of these genes, with particularly high expression levels observed in the silique and root. Focusing on BobBIL4, we investigated its role in brassinosteroid (BR)-mediated root development and salt stress tolerance. BobBIL4 expression levels increased in response to BR and salt treatments. The functional characterization of this gene in Arabidopsis revealed that it enhances root growth and salinity tolerance. These findings provide insights into BI-1 gene functions in cauliflower while also highlighting the potential utility of BobBIL4 for improving crop stress resistance.


Asunto(s)
Arabidopsis , Brassica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Brassica/genética , Brassica/metabolismo , Brassica/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Familia de Multigenes , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Brasinoesteroides/metabolismo
3.
Plant Signal Behav ; 19(1): 2404807, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279500

RESUMEN

The plant root absorbs water and nutrients, anchors the plant in the soil, and promotes plant development. Root is developed from root apical meristem (RAM), which is formed during embryo stage and is maintained by dividing stem cells. Plant hormones have a predominant role in RAM maintenance. This review evaluates the functional crosstalk among three major hormones (auxin, cytokinin, and brassinolide) in RAM development in Arabidopsis, integrating a variety of experimental data into a regulatory network and revealing multiple layers of complexity in the crosstalk among these three hormones. We also discuss possible directions for future research on the roles of hormones in regulating RAM development and maintenance.


Asunto(s)
Arabidopsis , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Meristema/metabolismo , Meristema/crecimiento & desarrollo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Brasinoesteroides/metabolismo
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273343

RESUMEN

Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 µM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Esteroides Heterocíclicos , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Esteroides Heterocíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Perfilación de la Expresión Génica/métodos , Especies Reactivas de Oxígeno/metabolismo , Frío , Estrés Fisiológico , Respuesta al Choque por Frío , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
J Agric Food Chem ; 72(36): 19629-19643, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39207175

RESUMEN

Brassinosteroids (BRs) are crucial plant hormones influencing diverse developmental processes in rice. While several enzymes in BR biosynthesis have been identified, their regulatory mechanisms remain largely unknown. This study highlights a novel regulatory pathway wherein the CHD3 chromatin remodeler, BLA1, epigenetically modulates the expression of key BR biosynthesis genes, BRD1 and D2. Phenotypic analysis of bla1 mutants revealed significant alterations, such as increased leaf angles and longer mesocotyls, which were alleviated by BR synthesis inhibitors. Moreover, the bla1 mutants showed elevated BR levels that correlated with the significant upregulation of the expression levels of BRD1 and D2, particularly at the lamina joint sites. Mechanistically, the yeast one-hybrid and chromatin immunoprecipitation assays revealed specific binding of BLA1 to the promoter regions of BRD1 and D2, accompanied by a marked enrichment of the transcriptionally active histone modification, H3K4me3, on these loci in the bla1 mutant. Functional assessments of the brd1 and d2 mutants confirmed their reduced sensitivity to BR, further underscoring their critical regulatory roles in BR-mediated developmental processes. Our findings uncovered an epigenetic mechanism that governs BR biosynthesis and orchestrates the expression of BRD1 and D2 to modulate BR levels and influence rice growth and development.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Oryza , Hojas de la Planta , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Epigénesis Genética , Reguladores del Crecimiento de las Plantas/metabolismo , Mutación
6.
Plant Cell Rep ; 43(9): 219, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155298

RESUMEN

KEY MESSAGE: Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.


Asunto(s)
Brasinoesteroides , Resistencia a la Sequía , Fotosíntesis , Esteroides Heterocíclicos , Vitis , Antioxidantes/metabolismo , Antioxidantes/farmacología , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Carbono/metabolismo , Glucosiltransferasas/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Estrés Fisiológico/efectos de los fármacos , Vitis/efectos de los fármacos , Vitis/metabolismo , Vitis/fisiología
7.
BMC Biol ; 22(1): 184, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183294

RESUMEN

BACKGROUND: Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS: There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS: Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.


Asunto(s)
Brasinoesteroides , Ácidos Indolacéticos , Proteínas de Plantas , Prunus , Transducción de Señal , Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/fisiología , Prunus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Esteroides Heterocíclicos/metabolismo
8.
Plant Physiol Biochem ; 215: 109023, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146914

RESUMEN

The introduction of arsenic, a hazardous metalloid, into the soil system due to heavy industrialization has negatively affected agricultural productivity, resulting in limited crop yields. A recent breakthrough in stress-responsive hormones, specifically brassinosteroids, has extensively covered the role of antioxidant enzyme defense systems in heavy metal stress mitigation. Considering the antioxidant properties and metal complex formation abilities of polyphenols, our study focuses on examining their role in arsenate toxicity amelioration by 24-epibrassinolide. We demonstrate enhanced growth parameters of sodium arsenate-stressed seedlings upon application of 24-epibrassinolide, with increased root and shoot polyphenol levels analyzed by high-performance liquid chromatography. Specifically, the concentration of catechin, sinapic acid, 4-hydroxy benzoic acid, protocatechuic acid, 4-coumaric acid, and myricetin were elevated, indicating induction of phenylpropanoid signaling pathway. Further, we also report a decrease in the generation of superoxide anions and hydrogen peroxide validated the antioxidant effects of these metabolites through the nitrobluetetrazolium and diaminobenzidine staining method. In addition, evaluation of transcript level of genes encoding for specific enzymes of the phenylpropanoid pathway in shoot and root showed a significant upregulation in mRNA expression of phenylalanine ammonia-lyase-1, cinnamate-4-hydroxylase, and caffeic acid o-methyltransferase-1 upon exogenous application of 24-epibrassinolide in arsenate stressed Oryza sativa.


Asunto(s)
Arseniatos , Brasinoesteroides , Oryza , Plantones , Esteroides Heterocíclicos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Esteroides Heterocíclicos/farmacología , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Arseniatos/toxicidad , Antioxidantes/metabolismo , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polifenoles/metabolismo
9.
Plant Physiol Biochem ; 215: 109044, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178801

RESUMEN

There has been a growing concern over soil cadmium (Cd) pollution, underscoring the importance of finding effective remediation strategies. Willow trees have emerged as promising candidates for phytoremediation of Cd-contaminated soils. Nevertheless, the specific potential of a novel willow genotype, NJU513, in remediating Cd-polluted soil remains unexplored. Hence, the primary objectives of this study were twofold: firstly, to ascertain the suitability of the willow genotype NJU513 for remediating Cd-contaminated soil; and secondly, to elevate its remediation efficciency with the application of epibrassinolide (Brs). In the pot-culture experiment without Brs, its leaf and stem Cd concentrations were 203 mg kg-1 and 65.1 mg kg-1, with a bioaccumulation factor (BCF) of 20.8 and 6.68, respectively. In the pot-culture experiment with Brs, the corresponding Cd concentrations were 226 mg kg-1 and 59.2 mg kg-1, with a BCF of 23.1 and 6.06, respectively. In addition, the extracted Cd contents were higher in the Brs treatments (1.11-1.37 mg plant-1) than in the no-Brs treatments (0.78-0.96 mg plant-1) because Brs increased the plant biomass and leaf BCF. The mechanism underlying the Cd accumulation of NJU513 leaves with and without Brs was revealed by a transcriptome analysis. The expression levels of genes related to metal ion binding, channel activity, and transporters in leaves were up-regulated, which contributed to the high Cd accumulation and stress tolerance. Analyses of soil metabolites and bacteria in the presence and absence of Brs spraying on willow leaves indicated that soil organic compounds with carboxyl and amino groups may induce Cd activation and passivation, respectively. This study provides valuable insights for developing woody plant varieties that can be used for remediating Cd-contaminated soil.


Asunto(s)
Biodegradación Ambiental , Brasinoesteroides , Cadmio , Salix , Contaminantes del Suelo , Esteroides Heterocíclicos , Cadmio/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Salix/metabolismo , Salix/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Esteroides Heterocíclicos/farmacología , Esteroides Heterocíclicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Suelo/química
10.
Proc Natl Acad Sci U S A ; 121(36): e2403040121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190354

RESUMEN

ELONGATED HYPOCOTOYL5 (HY5) and PHYTOCHROME INTERACTING FACTORs (PIFs) are two types of important light-related regulators of plant growth, however, their interplay remains elusive. Here, we report that the activated tomato (Solanum lycopersicum) HY5 (SlHY5) triggers the transcription of a Calcium-dependent Protein Kinase SlCPK27. SlCPK27 interacts with and phosphorylates SlPIF4 at Ser-252 and Ser-308 phosphosites to promote its degradation. SlPIF4 promotes hypocotyl elongation mainly by activating the transcription of SlDWF, a key gene in brassinosteroid (BR) biosynthesis. Such a SlHY5-SlCPK27-SlPIF4-BR cascade not only plays a crucial role in photomorphogenesis but also regulates thermomorphogenesis. Our results uncover a previously unidentified mechanism that integrates Ca2+ signaling with the light signaling pathways to regulate plant growth by modulating BR biosynthesis in response to changes in ambient light and temperature.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Luz , Fosforilación , Hipocótilo/metabolismo , Hipocótilo/crecimiento & desarrollo , Temperatura , Morfogénesis
11.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125682

RESUMEN

Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.


Asunto(s)
Alelos , Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126068

RESUMEN

Alfalfa (Medicago L.) is a high-quality perennial leguminous forage with the advantages of salt tolerance, mowing tolerance, high protein content, and other economically valuable characteristics. As the sixth class of plant hormones, brassinosteroids (BRs) play indispensable roles in modulating a variety of plant growth, maturation, and environmental adaptation processes, thereby influencing vegetal expansion and development. Brassinosteroid signal kinases (BSKs) are key cytoplasmic receptor kinases downstream of the BR signaling transduction pathway, participating in plant growth, development, and stress regulation. However, the phylogenetic and expression pattern analyses of the BSK gene family among the five alfalfa species have rarely been reported; in this study, 52 BSK family members were found in the genomes of the five subspecies, and phylogenetic trees were constructed according to protein sequences, allowing us to categorize all BSKs into seven distinct groups. Domain, conserved motif, and exon-intron structural analyses showed that most BSK members were relatively conserved, except for MtBSK3-2, MtBSK7-1, and MtBSK7-2, which may be truncated members. Intra-species collinearity and Ka/Ks analyses showed that purifying selection influenced BSK genes during evolution; most of the cis-acting elements in the promoter region were associated with responses, such as light, defense, and stress, anaerobic induction, MeJA, and abscisic acid. Expression pattern analysis indicated that the majority of alfalfa genes exhibited downregulation after reaching a peak at 0.5 h after treatment with 250 mM NaCl, especially for MsBSK14, MsBSK15, MsBSK17, MsBSK19, and MsBSK21; meanwhile, MsBSK4, MsBSK7, and MsBSK9 increased and were highly expressed at 12 h, demonstrating significantly altered expression patterns under salt stress; furthermore, MsBSK4, MsBSK7, and MsBSK9 exhibited expression specifically in the leaves. qRT-PCR analysis confirmed the expression trends for MsBSK4, MsBSK7, MsBSK9, MsBSK14, MsBSK15, and MsBSK16 matched the transcriptome data. However, the trends for MsBSK17, MsBSK19, and MsBSK21 diverged from the transcriptome data. Our study may provide a foundation for further functional analyses of BSK genes in growth, development, and salt stress tolerance in alfalfa.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Brasinoesteroides/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Transducción de Señal/genética , Perfilación de la Expresión Génica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Medicago sativa/genética
13.
New Phytol ; 243(6): 2332-2350, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056291

RESUMEN

Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Procesamiento Proteico-Postraduccional , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fosforilación , Ubiquitinación , Transducción de Señal , Magnaporthe/fisiología , Brasinoesteroides/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Quitina/metabolismo , Glucógeno Sintasa Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Ascomicetos
14.
J Plant Physiol ; 302: 154318, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39059150

RESUMEN

NHX5 and NHX6, Arabidopsis endosomal antiporters, play a vital role in facilitating ion and pH homeostasis in endosomal compartments. Studies have found that NHX5 and NHX6 are essential for protein trafficking, auxin homeostasis, and plant growth and development. Here, we report the role of NHX5 and NHX6 in brassinosteroid (BR) signaling. We found that hypocotyl growth was enhanced in nhx5 nhx6 under epibrassinolide (eBR) treatment. nhx5 nhx6 bri1 was insensitive to eBR treatment, indicating that NHX5 and NHX6 are downstream of the BRI1 receptor in BR signaling. Moreover, confocal observation with both hypocotyls and root tips showed that BRI1-YFP localization in the plasma membrane (PM) was reduced in nhx5 nhx6. Interestingly, brefeldin A (BFA) treatment showed that formation of the BFA bodies containing BRI1 and their disassembling were disrupted in nhx5 nhx6. Further genetic analysis showed that NHX5/NHX6 and SYP22 may act coordinately in BR signaling. NHX5 and NHX6 may regulate SYP22 function by modulating cellular K+ and pH homeostasis. Importantly, NHX5 and NHX6 colocalize and interact with SYP22, but do not interact with BRI1. In summary, our findings indicate that NHX5/NHX6/SYP22 complex is essential for the regulation of BRI1 recycling and PM localization. The H+-leak facilitated by NHX5 and NHX6 offers a means of controlling BR signaling in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Transducción de Señal , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Brefeldino A/farmacología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Concentración de Iones de Hidrógeno , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
16.
BMC Plant Biol ; 24(1): 671, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004702

RESUMEN

BACKGROUND: Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS: The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS: Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.


Asunto(s)
Brasinoesteroides , Cicer , Deshidratación , Melatonina , Esteroides Heterocíclicos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Cicer/efectos de los fármacos , Cicer/fisiología , Cicer/genética , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Melatonina/farmacología , Esteroides Heterocíclicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Sinergismo Farmacológico , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología
17.
Planta ; 260(2): 41, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954109

RESUMEN

MAIN CONCLUSION: In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Plantas Modificadas Genéticamente , Zanthoxylum , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zanthoxylum/genética , Zanthoxylum/fisiología , Zanthoxylum/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/efectos de los fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Familia de Multigenes , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Resistencia a la Sequía
18.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999944

RESUMEN

Bri1-EMS Suppressor 1 (BES1) and Brassinazole Resistant 1 (BZR1) are two key transcription factors in the brassinosteroid (BR) signaling pathway, serving as crucial integrators that connect various signaling pathways in plants. Extensive genetic and biochemical studies have revealed that BES1 and BZR1, along with other protein factors, form a complex interaction network that governs plant growth, development, and stress tolerance. Among the interactome of BES1 and BZR1, several proteins involved in posttranslational modifications play a key role in modifying the stability, abundance, and transcriptional activity of BES1 and BZR1. This review specifically focuses on the functions and regulatory mechanisms of BES1 and BZR1 protein interactors that are not involved in the posttranslational modifications but are crucial in specific growth and development stages and stress responses. By highlighting the significance of the BZR1 and BES1 interactome, this review sheds light on how it optimizes plant growth, development, and stress responses.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares , Desarrollo de la Planta , Estrés Fisiológico , Desarrollo de la Planta/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Brasinoesteroides/metabolismo , Transducción de Señal , Procesamiento Proteico-Postraduccional , Unión Proteica
19.
Methods Mol Biol ; 2827: 109-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985266

RESUMEN

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Lactonas/farmacología , Lactonas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Acetatos/farmacología , Acetatos/metabolismo
20.
Sci Rep ; 14(1): 16067, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992206

RESUMEN

Nickel (Ni) and copper (Cu) contamination have become major threats to plant survival worldwide. 24-epibrassinolide (24-EBR) and melatonin (MT) have emerged as valuable treatments to alleviate heavy metal-induced phytotoxicity. However, plants have not fully demonstrated the potential mechanisms by which these two hormones act under Ni and Cu stress. Herein, this study investigated the impact of individual and combined application of 24-EBR and MT on the growth and physiological traits of Primula forbesii Franch. subjected to stress (200 µmol L-1 Ni and Cu). The experiments compared the effects of different mitigation treatments on heavy metal (HM) stress and the scientific basis and practical reference for using these exogenous substances to improve HM resistance of P. forbesii in polluted environments. Nickel and Cu stress significantly hindered leaf photosynthesis and nutrient uptake, reducing plant growth and gas exchange. However, 24-EBR, MT, and 24-EBR + MT treatments alleviated the growth inhibition caused by Ni and Cu stress, improved the growth indexes of P. forbesii, and increased the gas exchange parameters. Exogenous MT effectively alleviated Ni stress, and 24-EBR + MT significantly alleviated the toxic effects of Cu stress. Unlike HM stress, MT and 24-EBR + MT activated the antioxidant enzyme activity (by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), significantly reduced reactive oxygen species (ROS) accumulation, and regulated ascorbate and glutathione cycle (AsA-GSH) efficiency. Besides, the treatments enhanced the ability of P. forbesii to accumulate HMs, shielding plants from harm. These findings conclusively illustrate the capability of 24-EBR and MT to significantly bolster the tolerance of P. forbesii to Ni and Cu stress.


Asunto(s)
Brasinoesteroides , Cobre , Melatonina , Níquel , Esteroides Heterocíclicos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Esteroides Heterocíclicos/farmacología , Níquel/toxicidad , Cobre/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA