Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.101
Filtrar
1.
PLoS Negl Trop Dis ; 18(9): e0012511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39325836

RESUMEN

Genomics, transcriptomics, and proteomics have significantly advanced our understanding of obligately host-associated microbes, where interrogation of the biology is often limited by the complexity of the biological system and limited tools. This includes the causative agents of many neglected tropical diseases, including filarial nematodes. Therefore, numerous transcriptomics studies have been undertaken on filarial nematodes. Most of these transcriptomics studies focus on Brugia malayi, which causes lymphatic filariasis and is a laboratory model for human filarial disease. Here, we undertook a meta-analysis of the publicly available B. malayi transcriptomics data enabling the direct cross comparison of samples from almost a dozen studies. This reanalysis highlights the consistency of transcriptomics results across many different studies and experimental designs from across the globe for over a decade of research, across many different generations of a sequencing technology, library preparation protocols, and differential expression tools. Males and microfilariae across samples had similar expression profiles. However, female samples were clustered into two differential expression patterns that were significantly different from one another. Largely, we confirm previous results for all studies reanalyzed including tissue-specific gene expression and anti-Wolbachia doxycycline treatment of microfilaria. However, we did not detect previously reported differential expression upon in vitro or in vivo treatment with ivermectin, albendazole, and DEC, instead identifying a consistent lack of transcriptomic change upon exposure to these anthelminthic drugs. Updated annotation has been provided that denotes poorly supported genes including those overlapping rRNAs.


Asunto(s)
Brugia Malayi , Perfilación de la Expresión Génica , Transcriptoma , Brugia Malayi/genética , Brugia Malayi/efectos de los fármacos , Femenino , Animales , Masculino , Filariasis Linfática/parasitología , Filariasis Linfática/genética , Microfilarias/genética , Humanos , Albendazol/farmacología , Anotación de Secuencia Molecular
2.
Nat Microbiol ; 9(10): 2488-2505, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232205

RESUMEN

Parasitic nematodes have an intimate, chronic and lifelong exposure to vertebrate tissues. Here we mined 41 published parasitic nematode transcriptomes from vertebrate hosts and identified 91 RNA viruses across 13 virus orders from 24 families in ~70% (28 out of 41) of parasitic nematode species, which include only 5 previously reported viruses. We observe widespread distribution of virus-nematode associations across multiple continents, suggesting an ancestral acquisition event and host-virus co-evolution. Characterization of viruses of Brugia malayi (BMRV1) and Onchocerca volvulus (OVRV1) shows that these viruses are abundant in reproductive tissues of adult parasites. Importantly, the presence of BMRV1 RNA in B. malayi parasites mounts an RNA interference response against BMRV1 suggesting active viral replication. Finally, BMRV1 and OVRV1 were found to elicit antibody responses in serum samples from infected jirds and infected or exposed humans, indicating direct exposure to the immune system.


Asunto(s)
Brugia Malayi , Virus ARN , Animales , Virus ARN/inmunología , Virus ARN/genética , Humanos , Brugia Malayi/inmunología , Brugia Malayi/genética , Onchocerca volvulus/inmunología , Onchocerca volvulus/genética , Vertebrados/virología , Vertebrados/inmunología , Vertebrados/parasitología , Nematodos/inmunología , Nematodos/genética , Nematodos/virología , Transcriptoma , Formación de Anticuerpos/inmunología , Filogenia , Interferencia de ARN
3.
Am J Trop Med Hyg ; 111(4): 829-840, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39106844

RESUMEN

Atypical presentations of filariasis have posed diagnostic challenges due to the complexity of identifying the causative species and the difficulties in both diagnosis and treatment. In this study, we present the integrative histological and molecular analysis of seven atypical filariasis cases observed in regions of nonendemicity of Thailand. All filariasis cases were initially diagnosed based on histological findings. To confirm the causative species, molecular characterization based on both filarial mitochondrial (mt 12S rRNA and COI genes) and nuclear ITS1 markers was performed, together with the identification of associated Wolbachia bacterial endosymbionts. Among the cases studied, Brugia pahangi (N = 3), Brugia malayi (N = 1), Dirofilaria sp. "hongkongensis" (N = 2), and a suspected novel filarial species genetically related to Pelecitus copsychi (N = 1) were identified. By targeting the 16S rRNA gene, Wolbachia was also molecularly amplified in two cases of infection with Dirofilaria sp. "hongkongensis." Phylogenetic analysis further revealed that the detected Wolbachia could be classified into supergroups C and F, indicating the high genetic diversity of this endosymbiont in Dirofilaria sp. "hongkongensis." Furthermore, this study demonstrates the consistency between histological findings and species identification based on mitochondrial loci rather than on the nuclear ITS1. This suggests the utility of mitochondrial markers, particularly COI, as a highly sensitive and reliable diagnostic tool for the detection and differentiation of filarial species in clinical specimens. Precise identification of the causative species will facilitate accurate diagnosis and treatment and is also essential for the development of epidemiological and preventive strategies for filariasis.


Asunto(s)
Filariasis , Filogenia , Simbiosis , Wolbachia , Wolbachia/genética , Wolbachia/aislamiento & purificación , Humanos , Tailandia/epidemiología , Animales , Filariasis/diagnóstico , Filariasis/parasitología , Masculino , Femenino , Brugia Malayi/genética , ARN Ribosómico 16S/genética , Adulto , Brugia pahangi/genética , Brugia pahangi/aislamiento & purificación , Persona de Mediana Edad , Dirofilaria/genética , ARN Ribosómico/genética , Filarioidea/genética , Filarioidea/aislamiento & purificación
4.
Sci Rep ; 14(1): 16780, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039168

RESUMEN

Lymphatic filariasis (LF) is a crippling and disfiguring parasitic condition. India accounts for 55% of the world's LF burden. The filarial parasite Wuchereria bancrofti is known to cause 99.4% of the cases while, Brugia malayi accounts for 0.6% of the issue occurring mainly in some pockets of Odisha and Kerala states. The Balasore (Baleswar) district of Odisha has been a known focus of B. malayi transmission. We employed molecular xenomonitoring to detect filarial parasite DNA in vectors. In six selected villages, Gravid traps were used to collect Culex mosquitoes and hand catch method using aspirators was followed for collection of mansonioides. A total of 2903 mosquitoes comprising of Cx. quinquefasciatus (n = 2611; 89.94%), Cx. tritaeniorhynchus (n = 100; 3.44%), Mansonia annuliferea (n = 139; 4.78%) and Mansonia uniformis (n = 53; 1.82%) were collected from six endemic villages. The species wise mosquitoes were made into 118 pools, each with a maximum of 25 mosquitoes, dried and transported to the laboratory at VCRC, Puducherry. The mosquito pools were subjected to parasite DNA extraction, followed by Real-time PCR using LDR and HhaI probes to detect W. bancrofti and B. malayi infections, respectively. Seven pools (6.66%) of Cx. quinquefasciatus, showed infection with only W. bancrofti while none of the pools of other mosquito species showed infection with either W. bancrofti or B. malayi. Although the study area is endemic to B. malayi, none of the vectors of B. malayi was found with parasite infection. This study highlights the ongoing transmission of bancroftian filariasis in the study villages of Balasore district of Odisha and its implications for evaluating LF elimination programme.


Asunto(s)
Brugia Malayi , Filariasis Linfática , Wuchereria bancrofti , Animales , Wuchereria bancrofti/aislamiento & purificación , Wuchereria bancrofti/genética , India/epidemiología , Brugia Malayi/genética , Brugia Malayi/aislamiento & purificación , Filariasis Linfática/epidemiología , Filariasis Linfática/parasitología , Filariasis Linfática/transmisión , Humanos , Mosquitos Vectores/parasitología , Culex/parasitología , Enfermedades Endémicas , Femenino , ADN de Helmintos/genética , ADN de Helmintos/análisis , Filariasis/epidemiología , Filariasis/parasitología , Filariasis/transmisión
5.
Int J Biol Macromol ; 276(Pt 2): 133977, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029846

RESUMEN

The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.


Asunto(s)
Aspartato-Semialdehído Deshidrogenasa , Brugia Malayi , Multimerización de Proteína , Wolbachia , Brugia Malayi/enzimología , Brugia Malayi/microbiología , Concentración de Iones de Hidrógeno , Animales , Aspartato-Semialdehído Deshidrogenasa/metabolismo , Aspartato-Semialdehído Deshidrogenasa/química , Aspartato-Semialdehído Deshidrogenasa/genética , Wolbachia/enzimología , Simulación de Dinámica Molecular , Simulación por Computador , Simbiosis , NADP/metabolismo
6.
Pan Afr Med J ; 47: 142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933431

RESUMEN

Lymphatic filariasis is a neglected tropical disease that affects the lymphatic system of humans. The major etiologic agent is a nematode called Wuchereria bancrofti, but Brugia malayi and Brugia timoriare sometimes encountered as causative agents. Mosquitoes are the vectors while humans the definitive hosts respectively. The burden of the disease is heavier in Nigeria than in other endemic countries in Africa. This occurs with increasing morbidity and mortality at different locations within the country, the World Health Organization recommended treatments for lymphatic filariasis include the use of Albendazole (400mg) twice per year in co-endemic areas with loa loa, Ivermectin (200mcg/kg) in combination with Albendazole (400mg) in areas that are co-endemic with onchocerciasis, ivermectin (200mcg/kg) with diethylcarbamazine citrate (DEC) (6mg/kg) and albendazole (400mg) in areas without onchocerciasis. This paper covered a systematic review, meta-analysis, and scoping review on lymphatic filariasis in the respective geopolitical zones within the country. The literature used was obtained through online search engines including PubMed and Google Scholar with the heading "lymphatic filariasis in the name of the state", Nigeria. This review revealed an overall prevalence of 11.18% with regional spread of Northwest (1.59%), North Central and North East, (4.52%), South West (1.26%), and South-South with South East (3.81%) prevalence. The disease has been successfully eliminated in Argungu local government areas (LGAs) of Kebbi State, Plateau, and Nasarawa States respectively. Most clinical manifestations (31.12%) include hydrocele, lymphedema, elephantiasis, hernia, and dermatitis. Night blood samples are appropriate for microfilaria investigation. Sustained MDAs, the right testing methods, early treatment of infected cases, and vector control are useful for the elimination of lymphatic filariasis for morbidity management and disability prevention in the country. Regional control strategies, improved quality monitoring of surveys and intervention programs with proper records of morbidity and disability requiring intervention are important approaches for the timely elimination of the disease in Nigeria.


Asunto(s)
Filariasis Linfática , Wuchereria bancrofti , Filariasis Linfática/epidemiología , Filariasis Linfática/tratamiento farmacológico , Humanos , Nigeria/epidemiología , Animales , Wuchereria bancrofti/aislamiento & purificación , Filaricidas/administración & dosificación , Filaricidas/uso terapéutico , Albendazol/administración & dosificación , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/parasitología , Ivermectina/administración & dosificación , Ivermectina/uso terapéutico , Brugia Malayi/aislamiento & purificación
7.
Sci Rep ; 14(1): 13176, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849355

RESUMEN

Brugia malayi are thread-like parasitic worms and one of the etiological agents of Lymphatic filariasis (LF). Existing anthelmintic drugs to treat LF are effective in reducing the larval microfilaria (mf) counts in human bloodstream but are less effective on adult parasites. To test potential drug candidates, we report a multi-parameter phenotypic assay based on tracking the motility of adult B. malayi and mf in vitro. For adult B. malayi, motility is characterized by the centroid velocity, path curvature, angular velocity, eccentricity, extent, and Euler Number. These parameters are evaluated in experiments with three anthelmintic drugs. For B. malayi mf, motility is extracted from the evolving body skeleton to yield positional data and bending angles at 74 key point. We achieved high-fidelity tracking of complex worm postures (self-occlusions, omega turns, body bending, and reversals) while providing a visual representation of pose estimates and behavioral attributes in both space and time scales.


Asunto(s)
Brugia Malayi , Microfilarias , Brugia Malayi/fisiología , Animales , Fenotipo , Humanos , Filariasis Linfática/parasitología , Antihelmínticos/farmacología
8.
EBioMedicine ; 105: 105188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848649

RESUMEN

BACKGROUND: The Global Program to Eliminate Lymphatic Filariasis (GPELF) is the largest public health program based on mass drug administration (MDA). Despite decades of MDA, ongoing transmission in some countries remains a challenge. To optimise interventions, it is critical to differentiate between recrudescence and new infections. Since adult filariae are inaccessible in humans, deriving a method that relies on the offspring microfilariae (mf) is necessary. METHODS: We developed a genome amplification and kinship analysis-based approach using Brugia malayi samples from gerbils, and applied it to analyse Wuchereria bancrofti mf from humans in Côte d'Ivoire. We examined the pre-treatment genetic diversity in 269 mf collected from 18 participants, and further analysed 1-year post-treatment samples of 74 mf from 4 participants. Hemizygosity of the male X-chromosome allowed for direct inference of haplotypes, facilitating robust maternal parentage inference. To enrich parasite DNA from samples contaminated with host DNA, a whole-exome capture panel was created for W. bancrofti. FINDINGS: By reconstructing and temporally tracking sibling relationships across pre- and post-treatment samples, we differentiated between new and established maternal families, suggesting reinfection in one participant and recrudescence in three participants. The estimated number of reproductively active adult females ranged between 3 and 11 in the studied participants. Population structure analysis revealed genetically distinct parasites in Côte d'Ivoire compared to samples from other countries. Exome capture identified protein-coding variants with ∼95% genotype concordance rate. INTERPRETATION: We have generated resources to facilitate the development of molecular genetic tools that can estimate adult worm burdens and monitor parasite populations, thus providing essential information for the successful implementation of GPELF. FUNDING: This work was financially supported by the Bill and Melinda Gates Foundation (https://www.gatesfoundation.org) under grant OPP1201530 (Co-PIs PUF & Gary J. Weil). B. malayi parasite material was generated with support of the Foundation for Barnes Jewish Hospital (PUF). In addition, the development of computational methods was supported by the National Institutes of Health under grants AI144161 (MM) and AI146353 (MM). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Asunto(s)
Filariasis Linfática , Recurrencia , Reinfección , Wuchereria bancrofti , Filariasis Linfática/parasitología , Filariasis Linfática/epidemiología , Filariasis Linfática/diagnóstico , Filariasis Linfática/genética , Humanos , Animales , Wuchereria bancrofti/genética , Femenino , Masculino , Reinfección/parasitología , Brugia Malayi/genética , Gerbillinae/parasitología , Variación Genética , Microfilarias/genética , Adulto , Haplotipos , Côte d'Ivoire/epidemiología
9.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569988

RESUMEN

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Asunto(s)
Aspartato Quinasa , Brugia Malayi , Simulación de Dinámica Molecular , Wolbachia , Brugia Malayi/enzimología , Brugia Malayi/microbiología , Regulación Alostérica , Animales , Aspartato Quinasa/metabolismo , Aspartato Quinasa/genética , Aspartato Quinasa/química , Simbiosis , Adenosina Trifosfato/metabolismo , Lisina/química , Lisina/metabolismo
10.
J Ethnopharmacol ; 326: 117858, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38346526

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: The plant Typhonium trilobatum has been utilized in traditional medicine for the treatment of many ailments, including parasitic infections. Recent examinations indicate that the bioactive substances from this plant may have antiparasitic activities against Brugia malayi, which have not been determined. PURPOSE: The parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti causing lymphatic filariasis, remain a significant challenge to global public health. Given the ongoing nature of this enduring menace, the current research endeavours to examine the efficacy of an important medicinal plant, Typhonium trilobatum. METHODS: Different extracts of the T. trilobatum tubers were evaluated for their antiparasitic activity. The most prominent extract was subjected to Gas Chromatography Mass Spectrometry (GC-MS) and High Performance Liquid Chromatography (HPLC) followed by Column Chromatography for isolating bioactive molecules. The major compounds were isolated and characterized based on different spectroscopic techniques (FTIR, NMR and HRMS). Further, the antiparasitic activity of the isolated compounds was evaluated against B. malayi and compared with clinically used antifilarial drugs like Diethylcarbamazine and Ivermectin. RESULTS: The methanolic extract of the tuber exhibited significant antiparasitic activity compared to the other extracts. The bioactive molecules isolated from the crude extract were identified as Linoleic acid and Palmitic acid. Antiparasitic activity of both the compounds has been performed against B. malayi and compared with clinically used antifilarial drugs, Ivermectin and DEC. The IC50 value of Linoleic acid was found to be 6.09 ± 0.78 µg/ml after 24 h and 4.27 ± 0.63 µg/ml after 48 h, whereas for Palmitic acid the value was 12.35 ± 1.09 µg/ml after 24 h and 8.79 ± 0.94 µg/ml after 48 h. The IC50 values of both the molecules were found to be similar to the standard drug Ivermectin (IC50 value of 11.88 ± 1.07 µg/ml in 24 h and 2.74 ± 0.43 µg/ml in 48 h), and much better compared to the DEC (IC50 values of 194.2 ± 2.28 µg/ml in 24 h and 101.8 ± 2.06 µg/ml in 48 h). Furthermore, it has been observed that both the crude extracts and the isolated compounds do not exhibit any detrimental effects on the J774.A.1 macrophage cell line. CONCLUSION: The isolation and characterization of bioactive compounds present in the methanolic tuber extract of Typhonium trilobatum were explored. Moreover, the antimicrofilarial activity of the crude extracts and its two major compounds were determined using Brugia malayi microfilarial parasites without any significant side effects.


Asunto(s)
Brugia Malayi , Filariasis , Plantas Medicinales , Animales , Humanos , Filariasis/tratamiento farmacológico , Filariasis/parasitología , Ivermectina/farmacología , Ivermectina/uso terapéutico , Ácido Palmítico , Ácido Linoleico/farmacología , Extractos Vegetales/química , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico
11.
Am J Trop Med Hyg ; 110(1): 111-116, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38011734

RESUMEN

Brugia malayi is the major cause of lymphatic filariasis (LF) in Indonesia. Zoophilic B. malayi was endemic in Belitung district, and mass drug administration (MDA) with diethylcarbamazine (DEC) and albendazole ceased after five annual rounds in 2010. The district passed three transmission assessment surveys (TAS) between 2011 and 2016. As part of the post-TAS3 surveillance of the national LF elimination program, we collected night blood samples for microfilaria (Mf) detection from 1,911 subjects more than 5 years of age in seven villages. A B. malayi Mf prevalence ranging from 1.7% to 5.9% was detected in five villages. Only 2 (5%) of the total 40 Mf-positive subjects were adolescents aged 18 and 19 years old, and 38 (95%) Mf-positive subjects were 21 years and older. Microfilarial densities in infected individuals were mostly low, with 60% of the subjects having Mf densities between 16 and 160 Mf/mL. Triple-drug treatment with ivermectin, DEC, and albendazole (IDA) was given to 36 eligible Mf-positive subjects. Adverse events were mostly mild, and treatment was well tolerated. One year later, 35 of the treated Mf-positive subjects were reexamined, and 33 (94%) had cleared all Mf, while the anti-Bm14 antibody prevalence remained almost unchanged. Results indicate that in B. malayi-endemic areas, post-TAS3 surveillance for Mf in the community may be needed to detect a potential parasite reservoir in adults. Selective treatment with IDA is highly effective in clearing B. malayi Mf and should be used to increase the prospects for LF elimination if MDA is reintroduced.


Asunto(s)
Brugia Malayi , Filariasis Linfática , Filaricidas , Adulto , Animales , Adolescente , Humanos , Preescolar , Adulto Joven , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Albendazol , Dietilcarbamazina , Administración Masiva de Medicamentos , Brugia , Indonesia/epidemiología , Wuchereria bancrofti , Ivermectina , Microfilarias
12.
J Biomol Struct Dyn ; 42(3): 1533-1543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37079006

RESUMEN

Human Lymphatic filariasis is caused by parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Protein disulfide isomerase (PDI), a redox-active enzyme, helps to form and isomerize the disulfide bonds, thereby acting as a chaperone. Such activity is essential for activating many essential enzymes and functional proteins. Brugia malayi protein disulfide isomerase (BmPDI) is crucial for parasite survival and an important drug target. Here, we used a combination of spectroscopic and computational analysis to study the structural and functional changes in the BmPDI during unfolding. Tryptophan fluorescence data revealed two well-separated transitions during the unfolding process, suggesting that the unfolding of the BmPDI is non-cooperative. The binding of the fluorescence probe 8-anilino-1-naphthalene sulfonic acid dye (ANS) validated the results obtained by the pH unfolding. The dynamics of molecular simulation performed at different pH conditions revealed the structural basis of BmPDI unfolding. Detailed analysis suggested that under different pH, both the global structure and the conformational dynamics of the active site residues were differentially altered. Our multiparametric study reveals the differential dynamics and collective motions of BmPDI unfolding, providing insights into its structure-function relationship.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Brugia Malayi , Animales , Humanos , Proteína Disulfuro Isomerasas , Desplegamiento Proteico , Dominio Catalítico , Relación Estructura-Actividad
13.
Acta Trop ; 249: 107049, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37866729

RESUMEN

Lymphatic filariasis is a public health problem and targeted for global elimination. WHO recommends mass drug administration to interrupt transmission of the parasites involved. There are concerns that transmission interruption may be difficult in areas of zoonotic filarial infections. This study aimed to estimate the pooled prevalence of zoonotic brugian filariasis, and to compare the pooled prevalence of brugian filariasis in human and animal populations in the same area based on available studies. A comprehensive literature search was conducted in health-related electronic databases (PubMed, Ovid MEDLINE, Index Medicus, google scholar). A random-effect meta-analysis of the pooled overall prevalence of filariasis in animal populations was conducted. Sixteen studies from four different Asian countries were identified. Studies were conducted most frequently in Thailand (n = 7), followed by Malaysia (n = 5), India (n = 3), and Sri Lanka (n = 1). Regardless of animal group, the pooled overall prevalence of animal Brugia infections was 13% (95%CI: 7-21%, I2:98%, 16 studies). On stratification, the pooled overall prevalence in the animal population was 19% (95%CI: 1-50%, I2: 99%, 3 studies) in India, 8% (95%CI: 2-7%, I2: 97%, 5 studies) in Malaysia, and 13% (95%CI: 7-20%, I2: 94%, 7 studies) in Thailand. The prevalence in the animal population was 17% (95%CI: 13-21%, 1 study) in Sri Lanka. The pooled overall prevalence of Brugia malayi was 13% (95%CI: 7-21%, I2:98%, 12 studies), while for Brugia pahangi this was 12% (95%CI: 7-19%, I2:86%, 7 studies). Regardless of animal group, geographic area, or diagnostic test, the prevalence of B. malayi was consistently high. On stratification by animal category, the pooled overall prevalence was 10% (95%CI: 6-14%, I2:92%, 13 studies) in cats, 12% (95%CI: 2-28%, I2: 99%, 6 studies) in dogs, and 55% (95%CI: 47-63%, 1 study) in leaf-eating monkeys. The findings show the extent of zoonotic Brugiainfections in domestic cats and dogs, suggesting that these animals are potential reservoirs for human brugian filariasis in the study countries. To substantiate this with more accuracy, future well designed whole genomic sequencing of individual mf collected from humans and B. malayi infected animals in the same area are needed.


Asunto(s)
Brugia Malayi , Filariasis Linfática , Animales , Humanos , Gatos , Perros , Filariasis Linfática/diagnóstico , Prevalencia , Zoonosis/epidemiología , Tailandia/epidemiología
14.
Acta Parasitol ; 68(4): 929-936, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935895

RESUMEN

PURPOSE: In search of a vaccine for the control of human lymphatic filariasis (LF) caused by Wuchereria bancrofti, Brugia malayi and B. timori, we identified three parasite-specific potential candidates: the disorganized muscle protein-1 (D), calponin (C) and troponin 1 (T) in B. malayi adult worm. In the present study, we investigated the immune response profile of the cocktails of the recombinant D, T and C proteins. METHODS: Groups of BALB/c mice were immunized with individual rproteins or their cocktails DT, TC, DC and DTC, and the immunogen-specific IgG and its subclasses and IgE were determined. Cells from the immunized animals were challenged in vitro with the respective rproteins and cocktails and the release of nitric oxide (NO) from macrophages and Th1 and Th2 cytokines from splenocytes were determined. RESULTS: Among the immunized groups, DTC elicited comparatively a stronger response which included augmented release of NO, Th1 (IL-1ß, IL-2, IFN-γ and TNF-α) and Th2 (IL-4, IL-6, IL-10 and TGF-ß) cytokines, and increased levels of immunogen-specific IgG, IgG1 and IgG2b and low levels of immunogen-specific IgG2a and IgE and the Th2 cytokine IL-13. CONCLUSION: Immune responses that play important role in host protection were elicited strongly by DTC cocktail compared to the individual rproteins or DT, TC and DC cocktails. The findings provide a sound rationale for further studies on DTC cocktail as a vaccine candidate for the control of LF.


Asunto(s)
Brugia Malayi , Vacunas , Ratones , Animales , Humanos , Ratones Endogámicos BALB C , Troponina I , Citocinas , Inmunoglobulina G , Inmunidad , Inmunoglobulina E , Calponinas
15.
Antimicrob Agents Chemother ; 67(10): e0041923, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37728916

RESUMEN

Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.


Asunto(s)
Antihelmínticos , Brugia Malayi , Filariasis Linfática , Canales de Potencial de Receptor Transitorio , Animales , Adulto , Femenino , Humanos , Dietilcarbamazina/farmacología , Dietilcarbamazina/uso terapéutico , Brugia Malayi/fisiología , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/parasitología , Canales de Potencial de Receptor Transitorio/farmacología , Canales de Potencial de Receptor Transitorio/uso terapéutico , Antihelmínticos/farmacología , Músculos
16.
Elife ; 122023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318129

RESUMEN

Nematode excretory-secretory (ES) products are essential for the establishment and maintenance of infections in mammals and are valued as therapeutic and diagnostic targets. While parasite effector proteins contribute to host immune evasion and anthelmintics have been shown to modulate secretory behaviors, little is known about the cellular origins of ES products or the tissue distributions of drug targets. We leveraged single-cell approaches in the human parasite Brugia malayi to generate an annotated cell expression atlas of microfilariae. We show that prominent antigens are transcriptionally derived from both secretory and non-secretory cell and tissue types, and anthelmintic targets display distinct expression patterns across neuronal, muscular, and other cell types. While the major classes of anthelmintics do not affect the viability of isolated cells at pharmacological concentrations, we observe cell-specific transcriptional shifts in response to ivermectin. Finally, we introduce a microfilariae cell culture model to enable future functional studies of parasitic nematode cells. We expect these methods to be readily adaptable to other parasitic nematode species and stages.


Asunto(s)
Antihelmínticos , Brugia Malayi , Nematodos , Parásitos , Animales , Humanos , Antihelmínticos/farmacología , Ivermectina/farmacología , Mamíferos
17.
Sci Rep ; 13(1): 7951, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193733

RESUMEN

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Asunto(s)
Brugia Malayi , Animales , Humanos , Masculino , Femenino , Brugia Malayi/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/metabolismo , Microfilarias/genética , Microfilarias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo
18.
Sci Rep ; 13(1): 8778, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258694

RESUMEN

Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.


Asunto(s)
Aedes , Brugia Malayi , Vesículas Extracelulares , Animales , Humanos , Femenino , Brugia Malayi/genética , Microfilarias/genética , Mosquitos Vectores , Mamíferos
19.
J Mol Graph Model ; 122: 108490, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121168

RESUMEN

Filarial infections are among the world's most disturbing diseases caused by 3 major parasitic worms; Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi, affecting more than 500 million people worldwide. Currently used drugs for mass drug administration (MDA) have been met with several challenges including the development of complications in individuals with filaria co-infections and parasitic drug resistance. The filarial endosymbiont, Wolbachia, has emerged as an attractive therapeutic target for filariasis elimination, due to the dependence of the filaria on this endosymbiont for survival. Here, we target an important enzyme in the Wolbachia heme biosynthetic pathway (ferrochelatase), using high-throughput virtual screening and molecular dynamics with MM-PBSA calculations. We identified four drug candidates; Nilotinib, Ledipasvir, 3-benzhydryloxy-8-methyl-8-azabicyclo[3.2.1]octane, and 2-(4-Amino-piperidin-1-yl)-ethanol as potential small molecules inhibitors as they could compete with the enzyme's natural substrate (Protoporphyrin IX) for active pocket binding. This prevents the worm from receiving the heme molecule from Wolbachia for their growth and survival, resulting in their death. This study which involved targeting enzymes in biosynthetic pathways of the parasitic worms' endosymbiont (Wolbachia), has proven to be an alternative therapeutic option leading to the discovery of new drugs, which will help facilitate the elimination of parasitic infections.


Asunto(s)
Brugia Malayi , Filariasis , Wolbachia , Animales , Wolbachia/metabolismo , Ferroquelatasa/metabolismo , Ferroquelatasa/uso terapéutico , Filariasis/tratamiento farmacológico , Filariasis/parasitología , Hemo/metabolismo
20.
Parasite Immunol ; 45(5): e12978, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073092

RESUMEN

A sensitive and specific diagnostic kit is crucial for the detection of human lymphatic filariasis at the early stage of infection as the existing diagnostic tools are inefficient and expensive. In the present study, we have cloned and expressed Brugia malayi HSP70 (BmHSP70) protein and characterized it as a potential antigen for diagnosis of the asymptomatic microfilariae stage of Wuchereria. bancrofti infection using ELISA, western blot, and bioinformatics tools. The antigenic efficacy of BmHSP70 was also compared with ScHSP70. The BmHSP70 and ScHSP70 peptide showed highly antigenic in nature and they showed immunogenic cross-reactivity endemic normal (EN) < chronic (CH) < microfilaraemic (MF) in IgG, IgG1, and IgG4 ELISA. IgG4-specific immunoblotting of BmHSP70 with MF sera further explicated its stage-specific antigenic cross-reactivity. These antigens (ScHSP70 and BmHSP70) showed a positive immunogenic correlation with the number of MF in blood samples. Thus, proposing BmHSP70 as a potential immunodiagnostic antigen against lymphatic filariasis. A triplet of GGMP tetrapeptide specific to the filarial HSP70 was also identified which was absent in human HSP70. In terms of sensitivity and specificity of antigens, these results suggest that recombinant BmHSP70 is a good antigen and could be used to diagnose early-stage of microfilariae infection.


Asunto(s)
Brugia Malayi , Filariasis Linfática , Animales , Humanos , Filariasis Linfática/diagnóstico , Wuchereria bancrofti , Antígenos Helmínticos , Microfilarias , Inmunoglobulina G , Proteínas HSP70 de Choque Térmico , Anticuerpos Antihelmínticos , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA