Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Sci Total Environ ; 947: 174579, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981535

RESUMEN

The current status of environmental pollution by heavy metals (HMs) will affect the entire ecosystem components. The results obtained so far indicate that some plants can be effective in removing toxic metals from the soil. For this purpose, the phytoremediation ability of three fleshy ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis), was evaluated under the stress of HMs. These succulents are known for their remarkable adaptive capabilities, allowing them to thrive in harsh environmental conditions, including those with high levels of contaminants. Their robust nature, efficient water-use strategies, and proven potential for heavy metal accumulation made them viable candidates for investigating their phytoremediation potential. This experiment was performed as factorial based on completely randomized block design with two factors; the first factor included the type of plant in 3 levels (cactus, kalanchoe and bryophyllum) and the second one included the type of metal in 5 levels (control, silver, cadmium, lead and nickel) in 3 repetitions. The concentration of each salt used was 100 ppm. The measured parameters included stem height, relative growth, diameter, dry matter percentage of root and shoot, chlorophyll a, b and total chlorophyll, carotenoid, anthocyanin, proline, and elements of nickel, silver, lead and cadmium, as well biological concentration factor. The results showed that the highest amount of final stem height, relative growth, dry matter percentage of shoot and the highest amount of chlorophyll a and b, carotenoid and anthocyanin were obtained in bryophyllum. Also, the results of mean comparison of the data related to the effect of metal type on the plants showed that the highest amount of carotenoid, anthocyanin and biological concentration factor were induced by cadmium. On the other hand, the highest and lowest amount of proline as well anthocyanin and proline were induced by silver and lead, respectively. Totally, bryophyllum had a high resistance to HMs and the examined HMs had less effect on the growth of this plant. Cactus, among trial species, exhibited superior potential for HM absorption compared to kalanchoe and bryophyllum. The study underscores cactus as an excellent phytoremediator.


Asunto(s)
Biodegradación Ambiental , Kalanchoe , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Opuntia , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Clorofila/metabolismo
2.
Sci Rep ; 14(1): 17754, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085365

RESUMEN

The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.


Asunto(s)
Biodegradación Ambiental , Cadmio , Zinc , Zinc/metabolismo , Cadmio/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Clorofila/metabolismo , Biomasa , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Briófitas/crecimiento & desarrollo , Briófitas/metabolismo , Briófitas/efectos de los fármacos
3.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
4.
Int J Phytoremediation ; 26(8): 1336-1347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379318

RESUMEN

This research examined the impact of heavy metals, including Cd, Pb, and Zn, on chlorophyll content and lamina cell structure in Bryum coronatum. After exposure to varying metal concentrations (0.015, 0.065, 0.250, 1, and 4 mg/L), chlorophyll content, chloroplast numbers, lamina cell change, and metal accumulation were investigated. Chlorophyll content was assessed using spectrophotometry, whereas chloroplast numbers and lamina cell changes were examined under a light microscope. Metal accumulation was quantified through ICP-MS. The findings revealed that Cd notably reduced chlorophyll a content, while Pb and Zn showed minimal influence. Cd and Pb exposure decreased the number of chloroplasts in lamina cells, with no impact from Zn. The moss's capacity to absorb metals increased with higher exposure levels, indicating its potential as a biomonitor for heavy metal pollution. Cell mortality occurred in response to Cd and Pb, primarily in the median and apical lamina regions, while Zn had no effect. This study sheds light on heavy metal toxicity in B. coronatum, underscoring its significance for environmental monitoring. Further research on the mechanisms and consequences of heavy metal toxicity in bryophytes is essential for a comprehensive understanding of this critical issue.


The capacity of moss B. coronatum to absorb metals increased with higher exposure levels, providing quantitative data on heavy metal pollution around it.


Asunto(s)
Clorofila , Metales Pesados , Metales Pesados/toxicidad , Clorofila/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Briófitas , Plomo/toxicidad , Plomo/metabolismo , Cloroplastos/metabolismo , Bryopsida/metabolismo , Bryopsida/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo
5.
Methods Mol Biol ; 2309: 143-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028685

RESUMEN

As a bryophyte and model plant, the moss Physcomitrium (Physcomitrella) patens (P. patens) is particularly well adapted to hormone evolution studies. Gene targeting through homologous recombination or CRISPR-Cas9 system, genome sequencing, and numerous transcriptomic datasets has allowed for molecular genetics studies and much progress in Evo-Devo knowledge. As to strigolactones, like for other hormones, both phenotypical and transcriptional responses can be studied, in both WT and mutant plants. However, as in any plant species, medium- to large-scale phenotype characterization is necessary, owing to the general high phenotypic variability. Therefore, many biological replicates are required. This may translate to large amount of the investigated compounds, particularly expensive (or difficult to synthesize) in the case of strigolactones. These issues prompted us to improve existing methods to limit the use of scarce/expensive compounds, as well as to simplify subsequent measures/sampling of P. patens. We hence scaled up well-tried experiments, in order to increment the number of tested genotypes in one given experiment.In this chapter, we will describe three methods we set up to study the response to strigolactones and related compounds in P. patens.


Asunto(s)
Bioensayo , Bryopsida/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Tiempo
6.
Plant Mol Biol ; 106(1-2): 123-143, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33713297

RESUMEN

Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.


Asunto(s)
Bryopsida/inmunología , Bryopsida/metabolismo , Péptidos/metabolismo , Inmunidad de la Planta , Transducción de Señal , Secuencia de Aminoácidos , Bryopsida/efectos de los fármacos , Bryopsida/genética , Quitosano/farmacología , Genoma de Planta , Péptidos/química , Inmunidad de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
7.
PLoS One ; 15(12): e0242919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33275616

RESUMEN

Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signaling pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella patens. To investigate P. patens response to high glucose treatment, we explored the dynamic changes in metabolism and protein population by applying a metabolomic fingerprint analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination and label-free untargeted proteomics. Glucose feeding causes specific changes in P. patens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is clearly different from those of osmotically induced responses. The maximal rate of PSII was not affected although chlorophyll decreased in both treatments. The biological process, cellular component, and molecular function gene ontology (GO) classifications of the differentially expressed proteins indicate the translation process is the most represented category in response to glucose, followed by photosynthesis, cellular response to oxidative stress and protein refolding. Importantly, although several proteins have high fold changes, these proteins have no predicted identity. The most significant discovery of our study at the proteome level is that high glucose increase abundance of proteins related to the translation process, which was not previously evidenced in non-vascular plants, indicating that regulation by glucose at the translational level is a partially conserved response in both plant lineages. To our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are performed after a high sugar treatment in non-vascular plants. These findings unravel evolutionarily shared and differential responses between vascular and non-vascular plants.


Asunto(s)
Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Glucosa/farmacología , Proteoma/efectos de los fármacos , Bryopsida/citología , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Replegamiento Proteico/efectos de los fármacos
8.
Int J Dev Biol ; 64(1-2-3): 21-28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32659008

RESUMEN

The strategies and experimental approaches that led the author to demonstrate the role of auxin in caulonema differentiation in the protonema of the moss Funaria hygrometrica are discussed. In stationary suspension cultures, the status of cell differentiation is regulated by inoculum cell density and auxin level. At low inoculum cell densities, 2-5 µM indole acetic acid (IAA) led to the differentiation of 65-70% caulonema filaments in 5-6 days. Caulonema can also differentiate in auxin-free medium if buffered at pH 5.0 after a lag of 6±1 days. The duration of lag can be manipulated and the cells are capable of responding to auxin at a higher level (3-10 µM) and produce about 20% caulonema after 3 days. This responsiveness or sensitivity to auxin can be enhanced further by growing cells in a nutrient-limited medium buffered at pH 5.0. In this medium, addition of 3 µM IAA led to the differentiation of 75-80% caulonema and rhizoids within 3 to 4 days. Work done in other laboratories has shown that auxin promotes caulonema differentiation in the moss Physcomitrella patens by positively regulating two basic helix-loop-helix type of transcription factor genes namely root hair defective six-like1 (PpRSL1) and PpRSL2 (Jang and Dolan 2011, New Phytologist 192: 319-327).


Asunto(s)
Bryopsida/crecimiento & desarrollo , Diferenciación Celular , Células Vegetales/efectos de los fármacos , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Bryopsida/efectos de los fármacos , Bryopsida/genética , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Proteínas de Plantas/genética
9.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111035

RESUMEN

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


Asunto(s)
Aminoaciltransferasas/metabolismo , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Glutatión Transferasa/metabolismo , Fitoquelatinas/metabolismo , Estrés Fisiológico/fisiología , Antioxidantes , Biodegradación Ambiental , Monitoreo Biológico , Cadmio/administración & dosificación , Pared Celular/metabolismo , Clorofila , Células Germinativas de las Plantas , Glutatión , Metales , Especies Reactivas de Oxígeno/metabolismo
10.
Plant Cell Physiol ; 61(5): 942-956, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101300

RESUMEN

Cell-to-cell communication is tightly regulated in response to environmental stimuli in plants. We previously used a photoconvertible fluorescent protein Dendra2 as a model reporter to study this process. This experiment revealed that macromolecular trafficking between protonemal cells in Physcomitrella patens is suppressed in response to abscisic acid (ABA). However, it remains unknown which ABA signaling components contribute to this suppression and how. Here, we show that ABA signaling components SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 2 (PpSnRK2) and ABA INSENSITIVE 3 (PpABI3) play roles as an essential and promotive factor, respectively, in regulating ABA-induced suppression of Dendra2 diffusion between cells (ASD). Our quantitative imaging analysis revealed that disruption of PpSnRK2 resulted in defective ASD onset itself, whereas disruption of PpABI3 caused an 81-min delay in the initiation of ASD. Live-cell imaging of callose deposition using aniline blue staining showed that, despite this onset delay, callose deposition on cross walls remained constant in the PpABI3 disruptant, suggesting that PpABI3 facilitates ASD in a callose-independent manner. Given that ABA is an important phytohormone to cope with abiotic stresses, we further explored cellular physiological responses. We found that the acquisition of salt stress tolerance is promoted by PpABI3 in a quantitative manner similar to ASD. Our results suggest that PpABI3-mediated ABA signaling may effectively coordinate cell-to-cell communication during the acquisition of salt stress tolerance. This study will accelerate the quantitative study for ABA signaling mechanism and function in response to various abiotic stresses.


Asunto(s)
Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Ácido Abscísico/farmacología , Bryopsida/citología , Bryopsida/efectos de los fármacos , Bryopsida/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Plasmodesmos/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 193: 110333, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088551

RESUMEN

Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 µM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 µg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently.


Asunto(s)
Bryopsida/efectos de los fármacos , Cadmio/toxicidad , Antioxidantes/metabolismo , Bryopsida/metabolismo , Cadmio/análisis , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Ecotoxicology ; 28(10): 1169-1176, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31696444

RESUMEN

Nitrogen (N2) fixation by moss-associated cyanobacteria is one of the main sources of new N input in pristine ecosystems such as boreal forests and arctic tundra. Given the non-vascular physiology of mosses, they are especially sensitive to e.g. increased N input and heavy metal deposition. While the effects of increased N input on moss-associated N2 fixation has been comprehensively assessed, hardly any reports exist on the effects of increased heavy metal load on this key ecosystem function. To address this knowledge gap, we made use of an extreme metal pollution gradient in boreal forests of Northern Sweden originating from a metal mine and its associated smelters. We collected the common moss Pleurozium schreberi, known to host cyanobacteria, along a distance gradient away from the metal source of pollution and measured moss-metal content (Fe, Cu, Zn, Pb) as well as N2 fixation. We found a strong distance gradient in moss-metal content for all investigated metals: a sharp decline in metal content with distance away from the metal pollution source. However, we found a similarly steep gradient in moss-associated N2 fixation, with highest activity closest to the metal source of pollution. Hence, while mosses may be sensitive to increased heavy metal inputs, the activity of colonising cyanobacteria seem to be unaffected by heavy metals, and consequently, ecosystem function may not be compromised by elevated metal input.


Asunto(s)
Bryopsida/efectos de los fármacos , Cianobacterias/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Metales Pesados/efectos adversos , Fijación del Nitrógeno/efectos de los fármacos , Simbiosis/efectos de los fármacos , Bryopsida/metabolismo , Cianobacterias/metabolismo , Monitoreo del Ambiente , Suecia
13.
Artículo en Inglés | MEDLINE | ID: mdl-31471003

RESUMEN

The genotoxicity of nanoparticles is a major concern for nano-safety appraisal in the bryophytes as they are the primary colonizers of bare land, indicators of atmospheric pollution and excellent accumulators of trace metals. The present study for the first time evince the in planta genotoxicity of MnONP in Physcomitrella patens a model plant system utilized for evolutionary developmental genetics. The induction of DNA strand breaks was confirmed by comet assay at all tested concentrations corroborated with the enhanced generation of ROS, increase in Mn dissolution, uptake and internalization. Genotoxicity is often coupled with epigenetic alterations. In the present study, global DNA methylation pattern at the level of single cells was studied by the methylation sensitive comet assay using the isochizomeric restriction endonucleases HpaII (digests unmethylated and hemimethylated DNA) and MspI (digests methylated DNA at 5'-CmCGG-3'). MnONP incited DNA hypomethylation in P. patens gametophores treated with the highest concentration of MnONP (20 µg/mL). The DNA hypomethylation incurred upon MnONP exposure was comparable with that of the DNA methylation blocker 5-azacytidine. This can be ascribed to its clastogenic potential mediated by the formation of H2O2, OH and O2¯. There are no reports on the epigenotoxicity of nanomaterials in plants utilizing the detection of DNA damage and DNA methylation. This can open up new avenues of research on the assessment of the epigenotoxic impact of environmentally relevant nanoparticles using bryophytes as model indicator plant system.


Asunto(s)
Bryopsida/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Mutágenos/toxicidad , Nanopartículas/toxicidad , Óxidos/toxicidad , Ensayo Cometa/métodos , Peróxido de Hidrógeno/toxicidad , Compuestos de Manganeso
14.
Ecotoxicol Environ Saf ; 181: 445-454, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31228820

RESUMEN

Responses of Hypnum plumaeforme, Thuidium cymbifolium, and Plagiomnium cuspidatum to short-term (96 h) BDE-47 and BDE-209(0, 0.005, 0.05, 0.5, and 5 µM, respectively) stress were investigated. Both BDE-47 and BDE-209 increased the lipid peroxidation in the three moss species, malondialdehyde (MDA) content increased with the elevated concentration of contaminants, and followed the order: P. cuspidatum > H. plumaeforme > T. cymbifolium on exposure to different concentrations. BDE-47 and BDE-209 stimulated the superoxide dismutase (SOD) and peroxidase (POD) activity of the three moss species, indicating that they played an important role in preventing oxidative stress. Reactive oxygen species (ROS) accumulation was positively correlated with the level of contaminants. The response of anti-oxidative enzymes to BDE-47 and BDE-209 stress differed among the three species. At 5  µM BDE-47 and BDE-209 treatment, the chlorophyll content of T. cymbifolium was even a little higher than the control group. Proline played an important role for the scavenging of ROS in P. cuspidatum and T. cymbifolium. In summary, BDE-47 was more toxic to the three moss species than BDE-209. P. cuspidatum was the most sensitive and T. cymbifolium was the most tolerant species to BDE-47 and BDE-209 stress. The strong resistance and tolerance of T. cymbifolium, combined with sensitive/moderate anti-oxidative response could elucidate its potential use as bio-indicator in the ecological risk assessment of BDE-47 and BDE-209 contamination.


Asunto(s)
Antioxidantes/metabolismo , Bryopsida/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Éteres Difenilos Halogenados/toxicidad , Bryopsida/enzimología , Bryopsida/metabolismo , Biomarcadores Ambientales , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
15.
New Phytol ; 222(3): 1380-1391, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30636294

RESUMEN

Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.


Asunto(s)
Bryopsida/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Secuencia de Bases , Bleomicina/farmacología , Bryopsida/efectos de los fármacos , Bryopsida/efectos de la radiación , Cisplatino/farmacología , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Metilmetanosulfonato/farmacología , Mutación/genética , Tasa de Mutación , Fenotipo , Rayos Ultravioleta , ADN Polimerasa theta
16.
Physiol Plant ; 167(3): 433-446, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30629304

RESUMEN

Microelectrode measurements carried out on leaf cells from Physcomitrella patens revealed that a sudden temperature drop and application of menthol evoked two types of different-shaped membrane potential changes. Cold stimulation evoked spike-type responses. Menthol depolarized the cell membrane with different rates. When it reached above 1 mV s-1 , the full response was recorded. Characteristic for the full responses was also a few-minute plateau of the membrane potential recorded after depolarization. The influence of inhibitors of calcium channels (5 mM Gd3+ ), potassium channels (5 mM Ba2+ ), chloride channels (200 µM Zn2+ , 50 µM niflumic acid) and proton pumps (10 µM DES), an activator of calcium release from intracellular stores (Sr2+ ), calcium chelation (by 400 µM EGTA) and phytohormones (50 µM auxin, 50 µM abscisic acid (ABA), 500 µM salicylic acid) on cold- and menthol-evoked responses was tested. Both responses are different in respect to the ion mechanism: cold-evoked depolarizations were influenced by Ba2+ and DES; in turn, menthol-evoked potential changes were most effectively blocked by Zn2+ . Moreover, the effectiveness of menthol in generation of full responses was reduced after administration of auxin or ABA, i.e. phytohormones known for their participation in responses to cold and regulation of proton pumps. The effects of DES indicated that one of the main conditions for generation of menthol-evoked responses is inhibition of the proton pump activity. Our results indicate that perception of cold and menthol by plants proceeds in different ways due to the differences in ionic mechanism and hormone dependence of cold- and menthol-evoked responses.


Asunto(s)
Bryopsida/metabolismo , Mentol/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/farmacología , Bryopsida/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Potenciales de la Membrana/efectos de los fármacos
17.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616513

RESUMEN

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Asunto(s)
Acetatos/farmacología , Antiinfecciosos/metabolismo , Bryopsida/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Antiinfecciosos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Bryopsida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Péptidos/aislamiento & purificación
18.
J Pept Sci ; 25(2): e3138, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30575224

RESUMEN

Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.


Asunto(s)
Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ácido Salicílico/farmacología , Bryopsida/enzimología , Péptidos/química , Ácido Salicílico/química
19.
Int J Mol Sci ; 19(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213069

RESUMEN

The moss Physcomitrella patens is a model system for studying plant developmental processes. ABSCISIC ACID INSENSITIVE3 (ABI3), a transcription factor of the ABA signaling pathway, plays an important role in plant growth and development in vascular plant. To understand the regulatory mechanism of ABA and PpABI3 on vegetative development in Physcomitrella patens, we applied physiological, cellular, and RNA-seq analyses in wild type (WT) plants and ∆abi3 mutants. During ABA treatment, the growth of gametophytes was inhibited to a lesser extent ∆abi3 plants compared with WT plants. Microscopic observation indicated that the differentiation of caulonemata from chloronemata was accelerated in ∆abi3 plants when compared with WT plants, with or without 10 µM of ABA treatment. Under normal conditions, auxin concentration in ∆abi3 plants was markedly higher than that in WT plants. The auxin induced later differentiation of caulonemata from chloronemata, and the phenotype of ∆abi3 plants was similar to that of WT plants treated with exogenous indole-3-acetic acid (IAA). RNA-seq analysis showed that the PpABI3-regulated genes overlapped with genes regulated by the ABA treatment, and about 78% of auxin-related genes regulated by the ABA treatment overlapped with those regulated by PpABI3. These results suggested that ABA affected vegetative development partly through PpABI3 regulation in P. patens; PpABI3 is a negative regulator of vegetative development in P. patens, and the vegetative development regulation by ABA and PpABI3 might occur by regulating the expression of auxin-related genes. PpABI3 might be associated with cross-talk between ABA and auxin in P. patens.


Asunto(s)
Ácido Abscísico/farmacología , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética
20.
Ecotoxicol Environ Saf ; 164: 739-748, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30122261

RESUMEN

The wide use of Ag nanoparticles (Ag NPs) as antimicrobial agents has resulted in a massive release of Ag NPs into environment, such as water and soil. As bryophytes live ubiquitously in water and soil, their tolerance and response to Ag NPs could be employed as an indicator for the harm of Ag NPs to the environment. Herein, we report the study on the physiological and biochemical responses of bryophytes to Ag NPs with different surface coatings at the gametophyte stages: protonema and leafy gametophyte, by using Physcomitrella patens as a model system. We found that Ag NPs, including AgNPs-B (Ag NPs without surface coating), AgNPs-PVP (Ag NPs coated with poly (N-vinyl-2-pyrrolidone)) and AgNPs-Cit (Ag NPs coated with citrate), were toxic to P. patens in terms of growth and development of the gametophyte. The toxicity was closely related to the concentration and surface coating of Ag NPs, and the growth stage of P. patens. The protonema was more sensitive to Ag NPs than the leafy gametophyte. Ag NPs inhibited the growth of the protonema following the trend of AgNPs-B > AgNPs-Cit > AgNPs-PVP. Ag NPs changed the thylakoid and chlorophyll contents, but did not affect the contents of essential elements in the protonema. At the leafy gametophyte stage, Ag NPs inhibited the growth of P. patens following a different order: AgNPs-Cit > AgNPs-B ≈ AgNPs-PVP. Ag NPs decreased the chlorophyll b content and disturbed the balance of some important essential elements in the leafy gametophytes. Both the dissolved fraction of Ag NPs and Ag NPs per se contributed to the toxicity. This study for the first time reveals the effects of Ag NPs on bryophytes at different growth stages, which calls for more attention to the nanoecotoxicology of Ag NPs.


Asunto(s)
Bryopsida/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Antiinfecciosos/química , Antiinfecciosos/toxicidad , Bryopsida/química , Clorofila/análisis , Ácido Cítrico/química , Nanopartículas del Metal/química , Metales Pesados/química , Metales Pesados/toxicidad , Desarrollo de la Planta/efectos de los fármacos , Pirrolidinonas/química , Pirrolidinonas/toxicidad , Plata/química , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA