Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.701
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39408612

RESUMEN

Methamphetamine (METH) is a drug of abuse, which induces behavioral sensitization following repeated doses. Since METH alters blood pressure, in the present study we assessed whether systolic and diastolic blood pressure (SBP and DBP, respectively) are sensitized as well. In this context, we investigated whether alterations develop within A1/C1 neurons in the vasomotor center. C57Bl/6J male mice were administered METH (5 mg/kg, daily for 5 consecutive days). Blood pressure was measured by tail-cuff plethysmography. We found a sensitized response both to SBP and DBP, along with a significant decrease of catecholamine neurons within A1/C1 (both in the rostral and caudal ventrolateral medulla), while no changes were detected in glutamic acid decarboxylase. The decrease of catecholamine neurons was neither associated with the appearance of degeneration-related marker Fluoro-Jade B nor with altered expression of α-synuclein. Rather, it was associated with reduced free radicals and phospho-cJun and increased heat shock protein-70 and p62/sequestosome within A1/C1 cells. Blood pressure sensitization was not associated with altered arterial reactivity. These data indicate that reiterated METH administration may increase blood pressure persistently and may predispose to an increased cardiovascular response to METH. These data may be relevant to explain cardiovascular events following METH administration and stressful conditions.


Asunto(s)
Presión Sanguínea , Catecolaminas , Metanfetamina , Ratones Endogámicos C57BL , Neuronas , Animales , Metanfetamina/efectos adversos , Metanfetamina/farmacología , Metanfetamina/toxicidad , Presión Sanguínea/efectos de los fármacos , Masculino , Catecolaminas/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos
2.
Science ; 385(6712): eado6593, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208104

RESUMEN

Opioids are widely used, effective analgesics to manage severe acute and chronic pain, although they have recently come under scrutiny because of epidemic levels of abuse. While these compounds act on numerous central and peripheral pain pathways, the neuroanatomical substrate for opioid analgesia is not fully understood. By means of single-cell transcriptomics and manipulation of morphine-responsive neurons, we have identified an ensemble of neurons in the rostral ventromedial medulla (RVM) that regulates mechanical nociception in mice. Among these, forced activation or silencing of excitatory RVMBDNF projection neurons mimicked or completely reversed morphine-induced mechanical antinociception, respectively, via a brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)-dependent mechanism and activation of inhibitory spinal galanin-positive neurons. Our results reveal a specific RVM-spinal circuit that scales mechanical nociception whose function confers the antinociceptive properties of morphine.


Asunto(s)
Analgésicos Opioides , Factor Neurotrófico Derivado del Encéfalo , Bulbo Raquídeo , Morfina , Neuronas , Nocicepción , Animales , Masculino , Ratones , Analgésicos Opioides/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Ratones Endogámicos C57BL , Morfina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Nocicepción/efectos de los fármacos , Receptor trkB/metabolismo , Análisis de la Célula Individual , Médula Espinal/efectos de los fármacos , Transcriptoma , Femenino
3.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39111835

RESUMEN

Animal studies consistently demonstrate that testosterone is protective against pain in multiple models, including an animal model of activity-induced muscle pain. In this model, females develop widespread muscle hyperalgesia, and reducing testosterone levels in males results in widespread muscle hyperalgesia. Widespread pain is believed to be mediated by changes in the central nervous system, including the rostral ventromedial medulla (RVM). The enzyme that converts testosterone to estradiol, aromatase, is highly expressed in the RVM. Therefore, we hypothesized that testosterone is converted by aromatase to estradiol locally in the RVM to prevent development of widespread muscle hyperalgesia in male mice. This was tested through pharmacological inhibition of estrogen receptors (ERs), aromatase, or ER-α in the RVM which resulted in contralateral hyperalgesia in male mice (C57BL/6J). ER inhibition in the RVM had no effect on hyperalgesia in female mice. As prior studies show modulation of estradiol signaling alters GABA receptor and transporter expression, we examined if removal of testosterone in males would decrease mRNA expression of GABA receptor subunits and vesicular GABA transporter (VGAT). However, there were no differences in mRNA expression of GABA receptor subunits of VGAT between gonadectomized and sham control males. Lastly, we used RNAscope to determine expression of ER-α in the RVM and show expression in inhibitory (VGAT+), serotonergic (tryptophan hydroxylase 2+), and µ-opioid receptor expressing (MOR+) cells. In conclusion, testosterone protects males from development of widespread hyperalgesia through aromatization to estradiol and activation of ER-α which is widely expressed in multiple cell types in the RVM.


Asunto(s)
Estradiol , Hiperalgesia , Bulbo Raquídeo , Ratones Endogámicos C57BL , Mialgia , Animales , Masculino , Estradiol/farmacología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Hiperalgesia/metabolismo , Ratones , Femenino , Mialgia/metabolismo , Receptor alfa de Estrógeno/metabolismo , Aromatasa/metabolismo , Testosterona/farmacología , Inhibidores de la Aromatasa/farmacología
4.
Nature ; 631(8021): 601-609, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987587

RESUMEN

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Asunto(s)
Alérgenos , Tronco Encefálico , Hiperreactividad Bronquial , Dopamina beta-Hidroxilasa , Pulmón , Neuronas , Animales , Femenino , Masculino , Ratones , Alérgenos/inmunología , Asma/inmunología , Asma/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Interleucina-4/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Mastocitos/inmunología , Neuronas/enzimología , Neuronas/fisiología , Norepinefrina/antagonistas & inhibidores , Norepinefrina/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/efectos de los fármacos , Ganglios Autónomos/citología , Dopamina beta-Hidroxilasa/metabolismo
5.
Elife ; 132024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017665

RESUMEN

The lateral parafacial area (pFL) is a crucial region involved in respiratory control, particularly in generating active expiration through an expiratory oscillatory network. Active expiration involves rhythmic abdominal (ABD) muscle contractions during late-expiration, increasing ventilation during elevated respiratory demands. The precise anatomical location of the expiratory oscillator within the ventral medulla's rostro-caudal axis is debated. While some studies point to the caudal tip of the facial nucleus (VIIc) as the oscillator's core, others suggest more rostral areas. Our study employed bicuculline (a γ-aminobutyric acid type A [GABA-A] receptor antagonist) injections at various pFL sites (-0.2 mm to +0.8 mm from VIIc) to investigate the impact of GABAergic disinhibition on respiration. These injections consistently elicited ABD recruitment, but the response strength varied along the rostro-caudal zone. Remarkably, the most robust and enduring changes in tidal volume, minute ventilation, and combined respiratory responses occurred at more rostral pFL locations (+0.6/+0.8 mm from VIIc). Multivariate analysis of the respiratory cycle further differentiated between locations, revealing the core site for active expiration generation with this experimental approach. Our study advances our understanding of neural mechanisms governing active expiration and emphasizes the significance of investigating the rostral pFL region.


Asunto(s)
Bicuculina , Espiración , Bicuculina/farmacología , Bicuculina/administración & dosificación , Animales , Espiración/fisiología , Masculino , Respiración/efectos de los fármacos , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/administración & dosificación
6.
J Am Heart Assoc ; 13(13): e034965, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38934856

RESUMEN

BACKGROUND: Rostral ventrolateral medulla (RVLM) neuron hyperactivity raises sympathetic outflow, causing hypertension. MicroRNAs (miRNAs) contribute to diverse biological processes, but their influence on RVLM neuronal excitability and blood pressure (BP) remains widely unexplored. METHODS AND RESULTS: The RVLM miRNA profiles in spontaneously hypertensive rats were unveiled using RNA sequencing. Potential effects of these miRNAs in reducing neuronal excitability and BP and underlying mechanisms were investigated through various experiments. Six hundred thirty-seven miRNAs were identified, and reduced levels of miR-193b-3p and miR-346 were observed in the RVLM of spontaneously hypertensive rats. Increased miR-193b-3p and miR-346 expression in RVLM lowered neuronal excitability, sympathetic outflow, and BP in spontaneously hypertensive rats. In contrast, suppressing miR-193b-3p and miR-346 expression in RVLM increased neuronal excitability, sympathetic outflow, and BP in Wistar Kyoto and Sprague-Dawley rats. Cdc42 guanine nucleotide exchange factor (Arhgef9) was recognized as a target of miR-193b-3p. Overexpressing miR-193b-3p caused an evident decrease in Arhgef9 expression, resulting in the inhibition of neuronal apoptosis. By contrast, its downregulation produced the opposite effects. Importantly, the decrease in neuronal excitability, sympathetic outflow, and BP observed in spontaneously hypertensive rats due to miR-193b-3p overexpression was greatly counteracted by Arhgef9 upregulation. CONCLUSIONS: miR-193b-3p and miR-346 are newly identified factors in RVLM that hinder hypertension progression, and the miR-193b-3p/Arhgef9/apoptosis pathway presents a potential mechanism, highlighting the potential of targeting miRNAs for hypertension prevention.


Asunto(s)
Presión Sanguínea , Hipertensión , Bulbo Raquídeo , MicroARNs , Animales , Masculino , Ratas , Apoptosis , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiopatología , Bulbo Raquídeo/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/metabolismo
7.
PLoS One ; 19(6): e0306099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917189

RESUMEN

Orexin-mediated stimulation of orexin receptors 1/2 (OX[1/2]R) may stimulate the diaphragm and genioglossus muscle via activation of inspiratory neurons in the pre-Bötzinger complex, which are critical for the generation of inspiratory rhythm, and phrenic and hypoglossal motoneurons. Herein, we assessed the effects of OX2R-selective agonists TAK-925 (danavorexton) and OX-201 on respiratory function. In in vitro electrophysiologic analyses using rat medullary slices, danavorexton and OX-201 showed tendency and significant effect, respectively, in increasing the frequency of inspiratory synaptic currents of inspiratory neurons in the pre-Bötzinger complex. In rat medullary slices, both danavorexton and OX-201 significantly increased the frequency of inspiratory synaptic currents of hypoglossal motoneurons. Danavorexton and OX-201 also showed significant effect and tendency, respectively, in increasing the frequency of burst activity recorded from the cervical (C3-C5) ventral root, which contains axons of phrenic motoneurons, in in vitro electrophysiologic analyses from rat isolated brainstem-spinal cord preparations. Electromyogram recordings revealed that intravenous administration of OX-201 increased burst frequency of the diaphragm and burst amplitude of the genioglossus muscle in isoflurane- and urethane-anesthetized rats, respectively. In whole-body plethysmography analyses, oral administration of OX-201 increased respiratory activity in free-moving mice. Overall, these results suggest that OX2R-selective agonists enhance respiratory function via activation of the diaphragm and genioglossus muscle through stimulation of inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons. OX2R-selective agonists could be promising drugs for various conditions with respiratory dysfunction.


Asunto(s)
Diafragma , Nervio Hipogloso , Neuronas Motoras , Receptores de Orexina , Nervio Frénico , Animales , Diafragma/efectos de los fármacos , Diafragma/inervación , Diafragma/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Receptores de Orexina/agonistas , Receptores de Orexina/metabolismo , Ratas , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratones , Masculino , Nervio Hipogloso/efectos de los fármacos , Nervio Hipogloso/fisiología , Ratas Sprague-Dawley , Inhalación , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiología , Isoquinolinas , Piridinas
8.
Physiol Behav ; 280: 114564, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657747

RESUMEN

Although salivation is essential during eating behavior, little is known about the brainstem centers that directly control the salivary glands. With regard to the inferior salivatory nucleus (ISN), the site of origin of the parasympathetic preganglionic cell bodies that innervate the parotid glands, previous anatomical studies have located it within the rostrodorsal medullary reticular formation. However, to date there is no functional data that shows the secretory nature of the somas grouped in this region. To activate only the somas and rule out the activation of the efferent fibers from and the afferent fibers to the ISN, in exp. 1, NMDA neurotoxin was administered to the rostrodorsal medullary region and the secretion of saliva was recorded during the following hour. Results showed an increased secretion of parotid saliva but a total absence of submandibular-sublingual secretion. In exp. 2, results showed that the hypersecretion of parotid saliva after NMDA microinjection was completely blocked by the administration of atropine (a cholinergic blocker) but not after administration of dihydroergotamine plus propranolol (α and ß-adrenergic blockers, respectively). These findings suggest that the somata of the rostrodorsal medulla are secretory in nature, controlling parotid secretion via a cholinergic pathway. The data thus functionally supports the idea that these cells constitute the ISN.


Asunto(s)
N-Metilaspartato , Glándula Parótida , Receptores de N-Metil-D-Aspartato , Salivación , Animales , Masculino , Ratas , Antagonistas Adrenérgicos beta/farmacología , Atropina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Microinyecciones , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Glándula Parótida/metabolismo , Glándula Parótida/efectos de los fármacos , Propranolol/farmacología , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Saliva/metabolismo , Salivación/efectos de los fármacos , Salivación/fisiología , Sialorrea
9.
Brain Res ; 1837: 148955, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679314

RESUMEN

Swallowing is induced by a central pattern generator in the nucleus tractus solitarius (NTS). We aimed to create a medullary slice preparation to elucidate the neural architecture of the central pattern generator of swallowing (Sw-CPG) and record its neural activities. Experiments were conducted on 2-day-old Sprague-Dawley rats (n = 46). The brainstem-spinal cord was transected at the pontomedullary and cervicothoracic junctions; the medulla was sliced transversely at thicknesses of 600, 700, or 800 µm. The rostral end of the slice was 100 µm rostral to the vagus nerve. We recorded hypoglossal nerve activity and electrically stimulated the vagus nerve or microinjected bicuculline methiodide (BIC) into the NTS. The 800-µm slices generated both rhythmic respiratory activity and electrically elicited neural activity. The 700-µm slices generated only respiratory activity, while the 600-µm slices did not generate any neural activity. BIC microinjection into the NTS in 800-µm slices resulted in the typical activity that closely resembled the swallowing activity reported in other experiments. This swallowing-like activity consistently lengthened the respiratory interval. Despite complete inhibition of respiratory activity, weak swallowing-like activity was observed under bath application of a non-NMDA receptor antagonist. Contrastingly, bath application of NMDA receptor antagonists resulted in a complete loss of swallowing-like activity and no change in respiratory activity. These results suggest that the 800-µm medullary slice preparation contains both afferent and efferent neural circuits and pattern generators of swallowing activity. Additionally, NMDA receptors may be necessary for generating swallowing activity. This medullary slice preparation can therefore elucidate Sw-CPG neural networks.


Asunto(s)
Animales Recién Nacidos , Bicuculina , Generadores de Patrones Centrales , Deglución , Nervio Hipogloso , Bulbo Raquídeo , Ratas Sprague-Dawley , Nervio Vago , Animales , Deglución/fisiología , Deglución/efectos de los fármacos , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/efectos de los fármacos , Bicuculina/farmacología , Bicuculina/análogos & derivados , Ratas , Nervio Vago/fisiología , Nervio Vago/efectos de los fármacos , Generadores de Patrones Centrales/fisiología , Generadores de Patrones Centrales/efectos de los fármacos , Nervio Hipogloso/fisiología , Nervio Hipogloso/efectos de los fármacos , Estimulación Eléctrica , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología
10.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669335

RESUMEN

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Asunto(s)
Analgésicos Opioides , Locus Coeruleus , Bulbo Raquídeo , Dolor , Sustancia Gris Periacueductal , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos Opioides/farmacología , Masculino , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos
11.
Biochem Pharmacol ; 201: 115102, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617998

RESUMEN

Activation of the rostral ventrolateral medulla (RVLM) cannabinoid receptor-1 (CB1R) causes neuronal nitric oxide synthase (nNOS)-dependent increases in sympathetic activity, blood pressure (BP) and heart rate (HR) in male rats. However, it remains unknown if the CB1R-mediated neurochemical and cardiovascular responses are influenced by the ovarian sex hormones, particularly estrogen (E2). Therefore, we studied the effects of intra-RVLM CB1R activation (WIN 55,212-2) on BP and HR in conscious female rats under the following hormonal states: (1) highest E2 level (proestrus sham-operated, SO); (2) E2-deprivation (ovariectomized, OVX); (3) OVX with E2 replacement (OVXE2). Intra-RVLM WIN55,212-2 elicited dose (100-400 pmol) dependent pressor and tachycardic responses, in OVX rats, which replicated the reported responses in male rats. However, in SO and OVXE2 rats, the CB1R-mediated pressor response was attenuated and the tachycardic response reverted to bradycardic response. The neurochemical findings suggested a key role for the upregulated RVLM sympathoexcitatory molecules phosphorated protein kinase B, phosphorated nNOS and reactive oxygen species in the exaggerated CB1R-mediated BP and HR responses in OVX rats, and an E2-dependent dampening of these responses. The intra-RVLM WIN55212-2-evoked cardiovascular and neurochemical responses were CB1R-mediated because they were attenuated by prior CB1R blockade (AM251). Our findings suggest that attenuation of RVLM neuroexcitation and oxidative stress underlies the protection conferred by E2, in female rats, against the CB1R-mediated adverse cardiovascular effects.


Asunto(s)
Estrógenos , Bulbo Raquídeo , Receptor Cannabinoide CB1 , Vasoconstrictores , Animales , Benzoxazinas/farmacología , Presión Sanguínea/efectos de los fármacos , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/metabolismo , Vasoconstrictores/farmacología
12.
Biomed Pharmacother ; 150: 113018, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35483194

RESUMEN

This study aims to determine whether toll-like receptor 4 (TLR4)-mediated inflammation in rostral ventrolateral medulla (RVLM) causes sympathetic overactivity leading to preeclampsia (PE) and if TLR4 inhibition with hydrogen sulfide (H2S) would reduce PE severity. Thirty patients with PE and 30 pregnant controls were involved. PE in rats was induced through deoxycorticosterone acetate and normal saline. NaHS (donor of H2S), lipopolysaccharide (LPS) (TLR4 agonist), and TAK-242 (TLR4 inhibitor) were injected in lateral cerebral ventricle to investigate their effect on microglia-mediated inflammation in RVLM, sympathetic activation, and PE symptoms. In patients with PE, plasma levels of NE, TNF-α, and interleukin-1ß were high compared with those of controls, whereas levels of H2S were low. Rats with PE showed an increased amount of renal sympathetic nerve activity and plasma levels of NE, with decreased H2S levels in RVLM. Microglia-mediated inflammation was observed in the RVLM of PE rats. Central infusion of LPS in pregnant rats induced microglia-mediated inflammation, sympathetic nervous tension, and PE-like symptoms, whereas TAK-242 reduced PE symptoms. NaHS treatment lessened microglia-mediated inflammation in the RVLM, sympathetic tension, and symptoms of PE both in PE rats and LPS-treating pregnant rats.These results suggest that inflammation in the RVLM caused by microglial activation might contribute to the progression of PE via an overactive sympathetic system. H2S could reduce PE via inhibiting inflammation in the RVLM. These results might provide a new target for the treatment of PE.


Asunto(s)
Sulfuro de Hidrógeno , Preeclampsia , Receptor Toll-Like 4 , Animales , Presión Sanguínea/efectos de los fármacos , Femenino , Humanos , Sulfuro de Hidrógeno/farmacología , Inflamación/tratamiento farmacológico , Bulbo Raquídeo/efectos de los fármacos , Preeclampsia/tratamiento farmacológico , Embarazo , Ratas , Receptor Toll-Like 4/antagonistas & inhibidores
13.
Life Sci ; 295: 120405, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181311

RESUMEN

AIMS: The rostral ventrolateral medulla (RVLM) is the main sympathetic output of the central nervous system to control blood pressure. Reportedly, reactive oxygen species (ROS) can increase arterial pressure, leading to hypertension. As ROS increase the sympathetic tone in RVLM and obese animals present grater oxidative stress, it would be important to note this relationship. MAIN METHODS: Therefore, we evaluated the systemic and central effects (in the RVLM) of vitamin C (vit C, an antioxidant) on the redox balance and cardiovascular and autonomic profiles in hyperadipose male rats. We also evaluated the neurotransmission by L-glutamate (L-glu) and vit C in the RVLM of awake hyperadipose rats. KEY FINDINGS: Our study confirmed that hyperadipose rats were hypertensive and tachycardic, presented increased sympathetic and decreased parasympathetic modulation of the heart, and had increased plasma lipoperoxidation compared with the control rats (CTR). Oral vitamin C treatment reverted cardiovascular, autonomic, and plasma redox dysfunction. Hyperadipose rats presented a higher blood pressure increase after L-glu microinjection and a lower response to vit C in the RVLM compared with the CTR group. Biochemical analysis of redox balance in RVLM punches showed that hyperadipose rats have increased NBT and T-BARS, and after treatment with vit C, the oxidative profile decreased. The antioxidative activity of vit C reduced the amount of ROS in the RVLM area that might have resulted in lowered blood pressure and sympathetic modulation. SIGNIFICANCE: Our data suggest central and peripheral benefits of vit C treatment on cardiovascular, autonomic, and oxidative dysfunctions in hyperadipose animals.


Asunto(s)
Ácido Ascórbico/farmacología , Hipertensión/tratamiento farmacológico , Bulbo Raquídeo/metabolismo , Animales , Antioxidantes/farmacología , Sistema Nervioso Autónomo/fisiopatología , Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/fisiopatología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/farmacología , Superóxido Dismutasa/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
14.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879205

RESUMEN

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Asunto(s)
Generadores de Patrones Centrales , Tos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/farmacología , Inhalación , Bulbo Raquídeo , Reflejo , Frecuencia Respiratoria , Músculos Abdominales/efectos de los fármacos , Músculos Abdominales/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Gatos , Generadores de Patrones Centrales/efectos de los fármacos , Generadores de Patrones Centrales/metabolismo , Generadores de Patrones Centrales/fisiopatología , Tos/tratamiento farmacológico , Tos/metabolismo , Tos/fisiopatología , Electromiografía , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Antagonistas de Receptores de GABA-A/administración & dosificación , Ácido Glutámico/administración & dosificación , Ácido Glutámico/análisis , Homocisteína/análogos & derivados , Homocisteína/farmacología , Inhalación/efectos de los fármacos , Inhalación/fisiología , Ácido Quinurénico/farmacología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiopatología , Piridazinas/farmacología , Reflejo/efectos de los fármacos , Reflejo/fisiología , Frecuencia Respiratoria/efectos de los fármacos , Frecuencia Respiratoria/fisiología
15.
Respir Physiol Neurobiol ; 296: 103810, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728431

RESUMEN

Systemic 8-OH-DPAT (a 5-HT1A receptor agonist) challenge evokes hyperventilation independent of peripheral 5-HT1A receptors. Though the pre-Botzinger Complex (PBC) is critical in generating respiratory rhythm and activation of local 5-HT1A receptors induces tachypnea via disinhibition of local GABAA neurons, its role in the respiratory response to systemic 8-OH-DPAT challenge is still unclear. In anesthetized rats, 8-OH-DPAT (100 µg/kg, iv) was injected twice to confirm the reproducibility of the evoked responses. The same challenges were performed after bilateral microinjections of (S)-WAY-100135 (a 5-HT1A receptor antagonist) or gabazine (a GABAA receptor antagonist) into the PBC. Our results showed that: 1) 8-OH-DPAT caused reproducible hyperventilation associated with hypotension and bradycardia; 2) microinjections of (S)-WAY-100135 into the PBC attenuated the hyperventilation by ˜60 % without effect on the evoked hypotension and bradycardia; and 3) the same hyperventilatory attenuation was also observed after microinjections of gabazine into the PBC. Our data suggest that PBC 5-HT1A receptors play a key role in the respiratory response to systemic 8-OH-DPAT challenge likely via disinhibiting local GABAergic neurons.


Asunto(s)
8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Antagonistas del GABA/farmacología , Hiperventilación/inducido químicamente , Hiperventilación/tratamiento farmacológico , Bulbo Raquídeo/metabolismo , Receptor de Serotonina 5-HT1A/fisiología , Centro Respiratorio/metabolismo , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas de Receptores de Serotonina/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/administración & dosificación , Animales , Modelos Animales de Enfermedad , Masculino , Bulbo Raquídeo/efectos de los fármacos , Piperazinas/farmacología , Piridazinas/farmacología , Ratas , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos
16.
Brain Res ; 1774: 147726, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785257

RESUMEN

Moderate exercise reduces arterial pressure (AP) and heart rate (HR) in spontaneously hypertensive rats (SHR) and changes neurotransmission in medullary areas involved in cardiovascular regulation. We investigated if regularly swimming exercise (SW) affects the cardiovascular adjustments mediated by opioidergic neuromodulation in the RVLM in SHR and Wistar-Kyoto (WKY) rats. Rats were submitted to 6 wks of SW. The day after the last exercise bout, α-chloralose-anesthetized rats underwent a cannulation of the femoral artery for AP and HR recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Bilateral injection of endomorphin-2 (EM-2, 0.4 mmol/L, 60 nL) into the RVLM increased MAP in SW-SHR (20 ± 4 mmHg, N = 6), which was lower than in sedentary (SED)-SHR (35 ± 4 mmHg, N = 6). The increase in MAP in SW-SHR induced by EM-2 into the RVLM was similar in SED- and SW-WKY. Naloxone (0.5 mmol/L, 60 nL) injected into the RVLM evoked an enhanced hypotension in SW-SHR (-66 ± 8 mmHg, N = 6) compared to SED-SHR (-25 ± 3 mmHg, N = 6), which was similar in SED- and SW-WKY. No significant changes were observed in HR after EM-2 or naloxone injections into the RVLM. Changes in hindquarter and mesenteric conductances evoked by EM-2 or naloxone injections into the RVLM in SW- or SED-SHR were not different. Mu Opioid Receptor expression by Western blotting was reduced in SW-SHR than in SED-SHR and SW-WKY. Therefore, regularly SW alters the opioidergic neuromodulation in the RVLM in SHR and modifies the mu opioid receptor expression in this medullary area.


Asunto(s)
Analgésicos Opioides/farmacología , Hipertensión/metabolismo , Bulbo Raquídeo/metabolismo , Neuronas/efectos de los fármacos , Condicionamiento Físico Animal , Receptores Opioides mu/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Bulbo Raquídeo/efectos de los fármacos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/metabolismo , Oligopéptidos/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Natación
17.
J Biochem Mol Toxicol ; 35(11): e22888, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34392583

RESUMEN

Although doxorubicin (DOX) is used in many cancer treatments, it causes neurotoxicity. In this study, the effect of thymoquinone (THQ), a powerful antioxidant, on DOX-induced neurotoxicity was evaluated. In total, 40 rats were used and 5 groups were formed. Group I: control group (n = 8); Group II: olive oil group (n = 8); Group III: the THQ group (n = 8); THQ 10 mg/kg per day was given intraperitoneally (i.p.) throughout the experiment; group IV: DOX group (n = 8); On Day 7 of the experiment, a single dose of 15 mg/kg intraperitoneally DOX injected; group V: DOX + THQ group (n = 8); Throughout the experiment, 10 mg/kg THQ per day and intraperitoneally 15 mg/kg DOX on Day 7 were injected. Immunohistochemically, tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hypoxia-inducible factor 1α (HIF1-α), glucose regulatory protein 78 (GRP78), and the gene inducible by growth arrest and DNA damage 153 (GADD153) proteins were evaluated in the brain cortex, medulla, and hippocampus regions. Total oxidant status (TOS) levels and total antioxidant status (TAS) in the brain tissue were measured. TNF-α, IL-17, HIF1-α, GRP78, and GADD153 immunoreactivities significantly increased in the DOX group in the study. THQ significantly reduced these values. THQ increased the TAS level significantly and decreased the TOS level significantly compared to the DOX group. THQ may play a role as a neuroprotective agent in DOX-induced neurotoxicity in the cortex, medulla, and hippocampus regions of the brain.


Asunto(s)
Benzoquinonas/farmacología , Corteza Cerebral/efectos de los fármacos , Doxorrubicina/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inflamación/prevención & control , Bulbo Raquídeo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/toxicidad , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Hipocampo/metabolismo , Hipocampo/patología , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/patología , Ratas , Ratas Wistar
18.
Behav Brain Res ; 414: 113450, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34265318

RESUMEN

Investigations have shown that the circadian rhythm can affect the mechanisms associated with drug dependence. In this regard, we sought to assess the negative consequence of morphine withdrawal syndrome on conditioned place aversion (CPA) and lateral paragigantocellularis (LPGi) neuronal activity in morphine-dependent rats during light (8:00-12:00) and dark (20:00-24:00) cycles. Male Wistar rats (250-300 g) were received 10 mg/kg morphine or its vehicle (Saline, 2 mL/kg/12 h, s.c.) in 13 consecutive days for behavioral assessment tests. Then, naloxone-induced conditioned place aversion and physical signs of withdrawal syndrome were evaluated during light and dark cycles. In contrast to the behavioral part, we performed in vivo extracellular single-unit recording for investigating the neural response of LPGi to naloxone in morphine-dependent rats on day 10 of morphine/saline exposure. Results showed that naloxone induced conditioned place aversion in both light and dark cycles, but the CPA score during the light cycle was larger. Moreover, the intensity of physical signs of morphine withdrawal syndrome was more severe during the light cycle (rest phase) compare to the dark one. In electrophysiological experiments, results indicated that naloxone evoked both excitatory and inhibitory responses in LPGi neurons and the incremental effect of naloxone on LPGi activity was stronger in the light cycle. Also, the neurons with the excitatory response exhibited higher baseline activity in the dark cycle, but the neurons with the inhibitory response showed higher baseline activity in the light cycle. Interestingly, the baseline firing rate of neurons recorded in the light cycle was significantly different in response (excitatory/inhibitory) -dependent manner. We concluded that naloxone-induced changes in LPGi cellular activity and behaviors of morphine-dependent rats can be affected by circadian rhythm and the internal clock.


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Condicionamiento Clásico/fisiología , Fenómenos Electrofisiológicos/fisiología , Bulbo Raquídeo/fisiopatología , Dependencia de Morfina/fisiopatología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Síndrome de Abstinencia a Sustancias/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/efectos de los fármacos , Masculino , Bulbo Raquídeo/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Wistar
19.
CNS Neurosci Ther ; 27(11): 1313-1326, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255932

RESUMEN

AIMS: Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein-coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. METHODS AND RESULTS: Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER-positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT-PCR and immunoblot analyses showed that the levels of GPER and phosphorylated µ-type opioid receptor (p-MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER-positive neurons in the RVM of Gper-Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER-positive neurons in the RVM could prevent mice from being in the pain persistent state. CONCLUSION: Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.


Asunto(s)
Dolor Crónico/genética , Bulbo Raquídeo/efectos de los fármacos , Dolor Postoperatorio/genética , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Animales , Dolor Crónico/fisiopatología , Hiperalgesia/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor , Dolor Postoperatorio/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/genética
20.
Respir Physiol Neurobiol ; 293: 103736, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224867

RESUMEN

The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the µ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Bulbo Raquídeo/fisiología , Neurotransmisores/farmacología , Centro Respiratorio/fisiología , Fenómenos Fisiológicos Respiratorios , Animales , Generadores de Patrones Centrales/efectos de los fármacos , Bulbo Raquídeo/efectos de los fármacos , Conejos , Centro Respiratorio/efectos de los fármacos , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA