Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
J Mol Biol ; 434(16): 167691, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35738429

RESUMEN

Solution and solid-state NMR spectroscopy are highly complementary techniques for studying structure and dynamics in very high molecular weight systems. Here we have analysed the dynamics of HIV-1 capsid (CA) assemblies in presence of the cofactors IP6 and ATPγS and the host-factor CPSF6 using a combination of solution state and cross polarisation magic angle spinning (CP-MAS) solid-state NMR. In particular, dynamical effects on ns to µs and µs to ms timescales are observed revealing diverse motions in assembled CA. Using CP-MAS NMR, we exploited the sensitivity of the amide/Cα-Cß backbone chemical shifts in DARR and NCA spectra to observe the plasticity of the HIV-1 CA tubular assemblies and also map the binding of cofactors and the dynamics of cofactor-CA complexes. In solution, we measured how the addition of host- and co-factors to CA -hexamers perturbed the chemical shifts and relaxation properties of CA-Ile and -Met methyl groups using transverse-relaxation-optimized NMR spectroscopy to exploit the sensitivity of methyl groups as probes in high-molecular weight proteins. These data show how dynamics of the CA protein assembly over a range of spatial and temporal scales play a critical role in CA function. Moreover, we show that binding of IP6, ATPγS and CPSF6 results in local chemical shift as well as dynamic changes for a significant, contiguous portion of CA, highlighting how allosteric pathways communicate ligand interactions between adjacent CA protomers.


Asunto(s)
Proteínas de la Cápside , Cápside , VIH-1 , Ensamble de Virus , Regulación Alostérica , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/química , VIH-1/química , VIH-1/fisiología , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos
2.
Proc Natl Acad Sci U S A ; 119(10): e2117781119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238630

RESUMEN

SignificanceThe mature capsids of HIV-1 are transiently stable complexes that self-assemble around the viral genome during maturation, and uncoat to release preintegration complexes that archive a double-stranded DNA copy of the virus in the host cell genome. However, a detailed view of how HIV cores rupture remains lacking. Here, we elucidate the physical properties involved in capsid rupture using a combination of large-scale all-atom molecular dynamics simulations and cryo-electron tomography. We find that intrinsic strain on the capsid forms highly correlated patterns along the capsid surface, along which cracks propagate. Capsid rigidity also increases with high strain. Our findings provide fundamental insight into viral capsid uncoating.


Asunto(s)
Cápside/fisiología , VIH-1/fisiología , Desencapsidación Viral , Cápside/química , Proteínas de la Cápside/química , Línea Celular , Tomografía con Microscopio Electrónico/métodos , Humanos , Simulación de Dinámica Molecular , Conformación Proteica
3.
J Virol ; 96(4): e0183121, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878808

RESUMEN

Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.


Asunto(s)
Cápside/fisiología , Herpesviridae/fisiología , Ensamble de Virus/fisiología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 1/fisiología , Humanos , Microscopía de Fuerza Atómica , Mutación , Unión Proteica , Dominios Proteicos , Virión/genética , Virión/metabolismo , Virión/fisiología
4.
Viruses ; 13(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34960803

RESUMEN

Picobirnaviruses (PBV) are found in a wide range of hosts and typically associated with gastrointestinal infections in immunocompromised individuals. Here, a divergent PBV genome was assembled from a patient hospitalized for acute respiratory illness (ARI) in Colombia. The RdRp protein branched with sequences previously reported in patients with ARI from Cambodia and China. Sputa from hospitalized individuals (n = 130) were screened by RT-qPCR which enabled detection and subsequent metagenomic characterization of 25 additional PBV infections circulating in Colombia and the US. Phylogenetic analysis of RdRp highlighted the emergence of two dominant lineages linked to the index case and Asian strains, which together clustered as a distinct genotype. Bayesian inference further established capsid and RdRp sequences as both significantly associated with ARI. Various respiratory-tropic pathogens were detected in PBV+ patients, yet no specific bacteria was common among them and four individuals lacked co-infections, suggesting PBV may not be a prokaryotic virus nor exclusively opportunistic, respectively. Competing models for the origin and transmission of this PBV genotype are presented that attempt to reconcile vectoring by a bacterial host with human pathogenicity. A high prevalence in patients with ARI, an ability to reassort, and demonstrated global spread indicate PBV warrant greater public health concern.


Asunto(s)
Picobirnavirus/aislamiento & purificación , Enfermedades Respiratorias/virología , Enfermedad Aguda , Adulto , Anciano , Cápside/fisiología , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Picobirnavirus/clasificación , Picobirnavirus/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/fisiología
6.
Viruses ; 13(11)2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34835043

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.


Asunto(s)
Cápside/fisiología , VIH-1/fisiología , Desencapsidación Viral , Transporte Activo de Núcleo Celular , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , VIH-1/genética , VIH-1/metabolismo , Humanos , Microscopía , Transcripción Reversa , Integración Viral , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/metabolismo
7.
PLoS Pathog ; 17(8): e1009679, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424922

RESUMEN

It is well established that the herpesvirus nuclear egress complex (NEC) has an intrinsic ability to deform membranes. During viral infection, the membrane-deformation activity of the NEC must be precisely regulated to ensure efficient nuclear egress of capsids. One viral protein known to regulate herpes simplex virus type 2 (HSV-2) NEC activity is the tegument protein pUL21. Cells infected with an HSV-2 mutant lacking pUL21 (ΔUL21) produced a slower migrating species of the viral serine/threonine kinase pUs3 that was shown to be a hyperphosphorylated form of the enzyme. Investigation of the pUs3 substrate profile in ΔUL21-infected cells revealed a prominent band with a molecular weight consistent with that of the NEC components pUL31 and pUL34. Phosphatase sensitivity and retarded mobility in phos-tag SDS-PAGE confirmed that both pUL31 and pUL34 were hyperphosphorylated by pUs3 in the absence of pUL21. To gain insight into the consequences of increased phosphorylation of NEC components, the architecture of the nuclear envelope in cells producing the HSV-2 NEC in the presence or absence of pUs3 was examined. In cells with robust NEC production, invaginations of the inner nuclear membrane were observed that contained budded vesicles of uniform size. By contrast, nuclear envelope deformations protruding outwards from the nucleus, were observed when pUs3 was included in transfections with the HSV-2 NEC. Finally, when pUL21 was included in transfections with the HSV-2 NEC and pUs3, decreased phosphorylation of NEC components was observed in comparison to transfections lacking pUL21. These results demonstrate that pUL21 influences the phosphorylation status of pUs3 and the HSV-2 NEC and that this has consequences for the architecture of the nuclear envelope.


Asunto(s)
Herpes Simple/patología , Herpesvirus Humano 2/fisiología , Membrana Nuclear/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus , Animales , Cápside/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/virología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Células Vero , Proteínas Virales/genética , Ensamble de Virus
8.
Science ; 373(6555): 700-704, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34353956

RESUMEN

Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.


Asunto(s)
Antígenos VIH/química , Antígenos VIH/metabolismo , VIH-1/química , VIH-1/fisiología , Envoltura Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Cápside/química , Cápside/fisiología , Tomografía con Microscopio Electrónico , VIH-1/ultraestructura , Membrana Dobles de Lípidos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Envoltura Viral/química , Envoltura Viral/ultraestructura , Virión/química , Virión/fisiología , Virión/ultraestructura , Ensamble de Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Curr Opin Virol ; 49: 102-110, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116391

RESUMEN

Large and giant DNA viruses are a monophyletic group constituting the recently established phylum Nucleocytoviricota. The virus particle morphogenesis of these viruses exhibit striking similarities. Viral factories are established in the host cells where new virions are assembled by recruiting host membranes, forming an inner lipid layer. An outer protein layer starts as a lamellar structure, commonly referred to as viral crescents, coded by the major capsid protein gene. Also, these viruses have a conserved ATPase-coding gene related to genome encapsidation. Similar properties are described for tectiviruses, putative small ancestors of giant viruses. Here we review the morphogenesis of giant viruses and discuss how the process similarities constitute additional evidence to the common origin of Nucleocytoviricota.


Asunto(s)
Amébidos/virología , Virus Gigantes/clasificación , Virus Gigantes/crecimiento & desarrollo , Cápside/fisiología , Cápside/ultraestructura , Evolución Molecular , Virus Gigantes/genética , Virus Gigantes/ultraestructura , Morfogénesis , Filogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral
10.
Viruses ; 13(3)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668972

RESUMEN

The rotavirus species A (RVA) capsid contains the spike protein VP4, which interacts with VP6 and VP7 and is involved in cellular receptor binding. The capsid encloses the genome consisting of eleven dsRNA segments. Reassortment events can result in novel strains with changed properties. Using a plasmid-based reverse genetics system based on simian RVA strain SA11, we previously showed that the rescue of viable reassortants containing a heterologous VP4-encoding genome segment was strain-dependent. In order to unravel the reasons for the reassortment restrictions, we designed here a series of plasmids encoding chimeric VP4s. Exchange of the VP4 domains interacting with VP6 and VP7 was not sufficient for rescue of viable viruses. In contrast, the exchange of fragments encoding the receptor-binding region of VP4 resulted in virus rescue. All parent strains and the rescued reassortants replicated efficiently in MA-104 cells used for virus propagation. In contrast, replication in BSR T7/5 cells used for plasmid transfection was only efficient for the SA11 strain, whereas the rescued reassortants replicated slowly, and the parent strains failing to produce reassortants did not replicate. While future research in this area is necessary, replication in BSR T7/5 cells may be one factor that affects the rescue of RVAs.


Asunto(s)
Proteínas de la Cápside/genética , Virus Reordenados/genética , Infecciones por Rotavirus/virología , Rotavirus/genética , Cápside/fisiología , Línea Celular , Humanos , Plásmidos/genética , Genética Inversa/métodos , Transfección/métodos , Replicación Viral/genética
11.
Virology ; 558: 76-85, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735753

RESUMEN

Kaposi's sarcoma-associated herpesvirus is a human rhadinovirus of the gammaherpesvirus sub-family. Although herpesviruses are well-studied models of capsid formation and its processes, those of KSHV remain unknown. KSHV ORF17 encoding the viral protease precursor (ORF17-prePR) is thought to contribute to capsid formation; however, functional information is largely unknown. Here, we evaluated the role of ORF17 during capsid formation by generating ORF17-deficient and ORF17 protease-dead KSHV. Both mutants showed a decrease in viral production but not DNA replication. ORF17 R-mut, with a point-mutation at the restriction or release site (R-site) by which ORF17-prePR can be functionally cleaved into a protease (ORF17-PR) and an assembly region (ORF17-pAP/-AP), failed to play a role in viral production. Furthermore, wild type KSHV produced a mature capsid, whereas ORF17-deficient and protease-dead KSHV produced a B-capsid, (i.e., a closed body possessing a circular inner structure). Therefore, ORF17 and its protease function are essential for appropriate capsid maturation.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/fisiología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Sistemas de Lectura Abierta/genética , Animales , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Replicación del ADN , Células HEK293 , Herpesvirus Humano 8/enzimología , Humanos , Serina Endopeptidasas , Células Vero
12.
mBio ; 12(2)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758083

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) capsid binds host proteins during infection, including cleavage and polyadenylation specificity factor 6 (CPSF6) and cyclophilin A (CypA). We observe that HIV-1 infection induces higher-order CPSF6 formation, and capsid-CPSF6 complexes cotraffic on microtubules. CPSF6-capsid complex trafficking is impacted by capsid alterations that reduce CPSF6 binding or by excess cytoplasmic CPSF6 expression, both of which are associated with decreased HIV-1 infection. Higher-order CPSF6 complexes bind and disrupt HIV-1 capsid assemblies in vitro Disruption of HIV-1 capsid binding to CypA leads to increased CPSF6 binding and altered capsid trafficking, resulting in reduced infectivity. Our data reveal an interplay between CPSF6 and CypA that is important for cytoplasmic capsid trafficking and HIV-1 infection. We propose that CypA prevents HIV-1 capsid from prematurely engaging cytoplasmic CPSF6 and that differences in CypA cellular localization and innate immunity may explain variations in HIV-1 capsid trafficking and uncoating in CD4+ T cells and macrophages.IMPORTANCE HIV is the causative agent of AIDS, which has no cure. The protein shell that encases the viral genome, the capsid, is critical for HIV replication in cells at multiple steps. HIV capsid has been shown to interact with multiple cell proteins during movement to the cell nucleus in a poorly understood process that may differ during infection of different cell types. In this study, we show that premature or too much binding of one human protein, cleavage and polyadenylation specificity factor 6 (CPSF6), disrupts the ability of the capsid to deliver the viral genome to the cell nucleus. Another human protein, cyclophilin A (CypA), can shield HIV capsid from premature binding to CPSF6, which can differ in CD4+ T cells and macrophages. Better understanding of how HIV infects cells will allow better drugs to prevent or inhibit infection and pathogenesis.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/fisiología , Ciclofilina A/metabolismo , VIH-1/fisiología , Interacciones Huésped-Patógeno , Factores de Escisión y Poliadenilación de ARNm/genética , Linfocitos T CD4-Positivos/virología , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata , Macrófagos/virología , Replicación Viral
13.
Vet Microbiol ; 253: 108974, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33433338

RESUMEN

Porcine parvovirus (PPV) is a major cause of reproductive failure in swine and has caused substantial losses throughout the world. Viral protein 2 (VP2) of PPV is a major structural protein that can self-assemble into virus-like particles (VLP) with hemagglutination (HA) activity. In order to identify the essential residues involved in the mechanism of capsid assembly and to further understand the function of HA, we analyzed a series of deletion mutants and site-directed mutations within the N-terminal of VP2 using the Escherichia coli system. Our results showed that deletion of the first 47 amino acids from the N-terminal of the VP2 protein did not affect capsid assembly, and further truncation to residue 48 Asparagine (Asn, N) caused detrimental effects. Site-directed mutagenesis experiments demonstrated that residue 47Asn reduced the assembly efficiency of PPV VLP, while residue 48Asn destroyed the stability, hemagglutination, and self-assembly characteristics of the PPV VP2 protein. Results from native PAGE inferred that macromolecular polymers were critical intermediates of the VP2 protein during the capsid assembly process. Site-directed mutation at 48Asn did not affect the ability of monomers to form into oligomers, but destroyed the ability of oligomers to assemble into macromolecular particles, influencing both capsid assembly and HA activity. Our findings provide valuable information on the mechanisms of PPV capsid assembly and the possibility of chimeric VLP vaccine development by replacing the first 47 amino acids at the N-terminal of the VP2 protein.


Asunto(s)
Antígenos Virales/genética , Asparagina/metabolismo , Proteínas de la Cápside/genética , Cápside/fisiología , Regulación Viral de la Expresión Génica , Parvovirus Porcino/genética , Parvovirus Porcino/fisiología , Secuencia de Aminoácidos , Animales , Antígenos Virales/química , Antígenos Virales/metabolismo , Asparagina/análisis , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Mutación , Porcinos , Ensamble de Virus/genética , Ensamble de Virus/fisiología
14.
Viruses ; 14(1)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35062219

RESUMEN

The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.


Asunto(s)
Núcleo Celular/virología , Citomegalovirus/fisiología , Liberación del Virus , Cápside/fisiología , Núcleo Celular/ultraestructura , Citoplasma/virología , Replicación del ADN , ADN Viral/metabolismo , Humanos , Membrana Nuclear/virología , Nucleocápside/fisiología , Empaquetamiento del Genoma Viral , Replicación Viral
15.
PLoS Biol ; 18(12): e3001015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332391

RESUMEN

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Asunto(s)
Cápside/metabolismo , VIH-1/metabolismo , Replicación Viral/fisiología , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/genética , Replicación del ADN/fisiología , ADN Viral/metabolismo , Células HEK293 , VIH-1/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Simulación de Dinámica Molecular , Nucleótidos/metabolismo , Permeabilidad , Ácido Fítico/análisis , Ácido Fítico/metabolismo , Virión/genética , Ensamble de Virus/fisiología , Replicación Viral/genética
16.
Med Hypotheses ; 144: 110267, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33254571

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the current pandemic of coronavirus disease 2019 (COVID-19) that has killed nearly one million people so far. While this is a respiratory virus, surprisingly, it has been recognized that patients with cardiovascular disease are likely to be affected severely and die of COVID-19. This phenomenon cannot be explained by the generally accepted logic that the SARS-CoV-2 infection/replication is the sole determinant of the actions of the virus to define the fate of host cells. I herein propose the viral protein fragment theory of COVID-19 pathogenesis based on my observations in cultured human vascular cells that SARS-CoV-2 spike protein can activate cell signaling events without the rest of the viral components. It is generally thought that SARS-CoV-2 and other single-stranded RNA viruses attach to the host cells through the interactions between surface proteins of the viral capsid and the host cell receptors; the fusion and the entry of the viral components, resulting in the replication of the viruses; and the host cell responses are the consequence of these events. I hypothesize that, as humans are infected with SARS-CoV-2, the virus releases (a) fragment(s) of the spike protein that can target host cells for eliciting cell signaling without the rest of the viral components. Thus, COVID-19 patients are subjected to the intact virus infecting the host cells for the replication and amplification as well as the spike protein fragments that are capable of affecting the host cells. I propose that cell signaling elicited by the spike protein fragments that occur in cardiovascular cells would predispose infected individuals to develop complications that are seen in severe and fatal COVID-19 conditions. If this hypothesis is correct, then the strategies to treat COVID-19 should include, in addition to agents that inhibit the viral replication, therapeutics that inhibit the viral protein fragment-mediated cardiovascular cell signaling.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Cápside/fisiología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/fisiología , Enzima Convertidora de Angiotensina 2/fisiología , Susceptibilidad a Enfermedades , Endotelio Vascular/virología , Humanos , Modelos Teóricos , SARS-CoV-2/patogenicidad , Transducción de Señal , Internalización del Virus , Replicación Viral
17.
Sci Rep ; 10(1): 19675, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184473

RESUMEN

Nora virus, a virus of Drosophila, encapsidates one of the largest single-stranded RNA virus genomes known. Its taxonomic affinity is uncertain as it has a picornavirus-like cassette of enzymes for virus replication, but the capsid structure was at the time for genome publication unknown. By solving the structure of the virus, and through sequence comparison, we clear up this taxonomic ambiguity in the invertebrate RNA virosphere. Despite the lack of detectable similarity in the amino acid sequences, the 2.7 Å resolution cryoEM map showed Nora virus to have T = 1 symmetry with the characteristic capsid protein ß-barrels found in all the viruses in the Picornavirales order. Strikingly, α-helical bundles formed from the extended C-termini of capsid protein VP4B and VP4C protrude from the capsid surface. They are similar to signalling molecule folds and implicated in virus entry. Unlike other viruses of Picornavirales, no intra-pentamer stabilizing annulus was seen, instead the intra-pentamer stability comes from the interaction of VP4C and VP4B N-termini. Finally, intertwining of the N-termini of two-fold symmetry-related VP4A capsid proteins and RNA, provides inter-pentamer stability. Based on its distinct structural elements and the genetic distance to other picorna-like viruses we propose that Nora virus, and a small group of related viruses, should have its own family within the order Picornavirales.


Asunto(s)
Cápside/ultraestructura , Picornaviridae/ultraestructura , Receptores Virales/metabolismo , Sitios de Unión , Evolución Biológica , Cápside/metabolismo , Cápside/fisiología , Microscopía por Crioelectrón , Modelos Moleculares , Filogenia , Picornaviridae/clasificación , Picornaviridae/fisiología , Estabilidad Proteica , ARN Viral/metabolismo
18.
Science ; 370(6513)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33033190

RESUMEN

During the first half of the viral life cycle, HIV-1 reverse transcribes its RNA genome and integrates the double-stranded DNA copy into a host cell chromosome. Despite progress in characterizing and inhibiting these processes, in situ mechanistic and structural studies remain challenging. This is because these operations are executed by individual viral preintegration complexes deep within cells. We therefore reconstituted and imaged the early stages of HIV-1 replication in a cell-free system. HIV-1 cores released from permeabilized virions supported efficient, capsid-dependent endogenous reverse transcription to produce double-stranded DNA genomes, which sometimes looped out from ruptured capsid walls. Concerted integration of both viral DNA ends into a target plasmid then proceeded in a cell extract-dependent reaction. This reconstituted system uncovers the role of the capsid in templating replication.


Asunto(s)
Cápside/fisiología , VIH-1/fisiología , Integración Viral , Replicación Viral , Sistema Libre de Células , Humanos
19.
Viruses ; 12(7)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630840

RESUMEN

Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a 'dodecahedron' can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.


Asunto(s)
Adenoviridae/fisiología , Cápside/fisiología , Infecciones por Adenoviridae/patología , Animales , Proteínas de la Cápside/fisiología , Microscopía por Crioelectrón , Humanos , Replicación Viral/fisiología
20.
PLoS Pathog ; 16(7): e1008604, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702029

RESUMEN

Drug resistance in viruses represents one of the major challenges of healthcare. As part of an effort to provide a treatment that avoids the possibility of drug resistance, we discovered a novel mechanism of action (MOA) and specific compounds to treat all nine human herpesviruses and animal herpesviruses. The novel MOA targets the pressurized genome state in a viral capsid, "turns off" capsid pressure, and blocks viral genome ejection into a cell nucleus, preventing viral replication. This work serves as a proof-of-concept to demonstrate the feasibility of a new antiviral target-suppressing pressure-driven viral genome ejection-that is likely impervious to developing drug resistance. This pivotal finding presents a platform for discovery of a new class of broad-spectrum treatments for herpesviruses and other viral infections with genome-pressure-dependent replication. A biophysical approach to antiviral treatment such as this is also a vital strategy to prevent the spread of emerging viruses where vaccine development is challenged by high mutation rates or other evasion mechanisms.


Asunto(s)
Antivirales/farmacología , Cápside/efectos de los fármacos , ADN Viral/efectos de los fármacos , Infecciones por Herpesviridae , Herpesviridae/efectos de los fármacos , Animales , Cápside/fisiología , Chlorocebus aethiops , ADN Viral/fisiología , Herpesviridae/fisiología , Humanos , Ratones , Prueba de Estudio Conceptual , Ratas , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA