Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.362
Filtrar
1.
Structure ; 32(6): 652-653, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848682

RESUMEN

In a recent issue of Nature, Coshic et al. employ a computational multiscale approach to package the complete HK97 viral genome into its capsid. They find both good agreement with experimental observations and shed new light on the heterogeneity of genome structures and the mechanism by which they package.


Asunto(s)
Cápside , Genoma Viral , Cápside/metabolismo , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Ensamble de Virus , Simulación de Dinámica Molecular , Modelos Moleculares
2.
Protein Sci ; 33(7): e5074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38888268

RESUMEN

Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.


Asunto(s)
Proteínas de la Cápside , Cápside , Dependovirus , Terapia Genética , Vectores Genéticos , Dependovirus/genética , Dependovirus/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Vectores Genéticos/genética , Terapia Genética/métodos , Cápside/química , Cápside/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Estabilidad Proteica , Humanos , Conformación Proteica , Modelos Moleculares
3.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38783793

RESUMEN

A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-toorder transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein-protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.


Asunto(s)
Proteínas de la Cápside , Flavivirus , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Flavivirus/patogenicidad , Flavivirus/genética , Flavivirus/fisiología , Flavivirus/metabolismo , Filogenia , Humanos , Unión Proteica , Cápside/metabolismo , Cápside/química , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos
4.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752610

RESUMEN

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Asunto(s)
Proteínas de la Cápside , Cápside , Hidrogeles , Nanotubos , Hidrogeles/química , Nanotubos/química , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Cápside/química , Cápside/inmunología , Levivirus/química , Levivirus/inmunología , Levivirus/genética , Animales , Nanoestructuras/química , Ratones , Modelos Moleculares
5.
Commun Biol ; 7(1): 557, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730276

RESUMEN

The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.


Asunto(s)
Microscopía por Crioelectrón , Cápside/metabolismo , Cápside/ultraestructura , Cápside/química , Extractos Celulares , Saccharomyces cerevisiae/genética , ARN Viral/metabolismo , ARN Viral/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
6.
Biochemistry ; 63(12): 1543-1552, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38787909

RESUMEN

Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.


Asunto(s)
Cápside , Guanidina , Virus de la Hepatitis B , Guanidina/química , Guanidina/farmacología , Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/efectos de los fármacos , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Dispersión del Ángulo Pequeño , Multimerización de Proteína , Modelos Moleculares , Ensamble de Virus/efectos de los fármacos , Difracción de Rayos X
7.
ACS Synth Biol ; 13(6): 1842-1850, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729919

RESUMEN

In-cell self-assembly of natural viral capsids is an event that can be visualized under transmission electron microscopy (TEM) observations. By mimicking the self-assembly of natural viral capsids, various artificial protein- and peptide-based nanocages were developed; however, few studies have reported the in-cell self-assembly of such nanocages. Our group developed a ß-Annulus peptide that can form a nanocage called artificial viral capsid in vitro, but in-cell self-assembly of the capsid has not been achieved. Here, we designed an artificial viral capsid decorated with a fluorescent protein, StayGold, to visualize in-cell self-assembly. Fluorescence anisotropy measurements and fluorescence resonance energy transfer imaging, in addition to TEM observations of the cells and super-resolution microscopy, revealed that StayGold-conjugated ß-Annulus peptides self-assembled into the StayGold-decorated artificial viral capsid in a cell. Using these techniques, we achieved the in-cell self-assembly of an artificial viral capsid.


Asunto(s)
Proteínas de la Cápside , Cápside , Transferencia Resonante de Energía de Fluorescencia , Péptidos , Péptidos/química , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Microscopía Electrónica de Transmisión , Polarización de Fluorescencia , Ensamble de Virus
8.
Hum Gene Ther ; 35(11-12): 401-411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38717948

RESUMEN

Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.


Asunto(s)
Dependovirus , Vectores Genéticos , Ultracentrifugación , Dependovirus/genética , Ultracentrifugación/métodos , Humanos , Vectores Genéticos/genética , Vectores Genéticos/química , Calibración , Terapia Genética/métodos , Cápside/química , Células HEK293
9.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38722807

RESUMEN

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Asunto(s)
Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , Mutación Puntual , Cápside/metabolismo , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Modelos Moleculares
10.
Phys Chem Chem Phys ; 26(17): 13094-13105, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628116

RESUMEN

Collision induced unfolding (CIU) is a method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations. Here, we investigate the gas-phase unfolding of norovirus capsid dimers from the Norwalk and Kawasaki strains by employing molecular dynamics simulations over a range of temperatures, representing different levels of activation, together with CIU experiments. The dimers have highly similar structures, but their CIU reveals different stability that can be explained by the different dynamics that arises in response to the activation seen in the simulations, including a part of the sequence with previously observed strain-specific dynamics in solution. Our findings show how similar protein variants can be examined using mass spectrometric techniques in conjunction with atomistic molecular dynamics simulations to reveal differences in stability as well as differences in how and where unfolding takes place upon activation.


Asunto(s)
Proteínas de la Cápside , Simulación de Dinámica Molecular , Norovirus , Desplegamiento Proteico , Norovirus/química , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Estabilidad Proteica , Cápside/química , Multimerización de Proteína
11.
Magn Reson Med ; 92(2): 792-806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651648

RESUMEN

PURPOSE: Gene therapy using adeno-associated virus (AAV) vector-mediated gene delivery has undergone substantial growth in recent years with promising results in both preclinical and clinical studies, as well as emerging regulatory approval. However, the inability to quantify the efficacy of gene therapy from cellular delivery of gene-editing technology to specific functional outcomes is an obstacle for efficient development of gene therapy treatments. Building on prior works that used the CEST reporter gene lysine rich protein, we hypothesized that AAV viral capsids may generate endogenous CEST contrast from an abundance of surface lysine residues. METHODS: NMR experiments were performed on isolated solutions of AAV serotypes 1-9 on a Bruker 800-MHz vertical scanner. In vitro experiments were performed for testing of CEST-NMR contrast of AAV2 capsids under varying pH, density, biological transduction stage, and across multiple serotypes and mixed biological media. Reverse transcriptase-polymerase chain reaction was used to quantify virus concentration. Subsequent experiments at 7 T optimized CEST saturation schemes for AAV contrast detection and detected AAV2 particles encapsulated in a biocompatible hydrogel administered in the hind limb of mice. RESULTS: CEST-NMR experiments revealed CEST contrast up to 52% for AAV2 viral capsids between 0.6 and 0.8 ppm. CEST contrast generated by AAV2 demonstrated high levels of CEST contrast across a variety of chemical environments, concentrations, and saturation schemes. AAV2 CEST contrast displayed significant positive correlations with capsid density (R2 > 0.99, p < 0.001), pH (R2 = 0.97, p = 0.01), and viral titer per cell count (R2 = 0.92, p < 0.001). Transition to a preclinical field strength yielded up to 11.8% CEST contrast following optimization of saturation parameters. In vivo detection revealed statistically significant molecular contrast between viral and empty hydrogels using both mean values (4.67 ± 0.75% AAV2 vs. 3.47 ± 0.87% empty hydrogel, p = 0.02) and quantile analysis. CONCLUSION: AAV2 viral capsids exhibit strong capacity as an endogenous CEST contrast agent and can potentially be used for monitoring and evaluation of AAV vector-mediated gene therapy protocols.


Asunto(s)
Cápside , Dependovirus , Imagen por Resonancia Magnética , Dependovirus/genética , Animales , Cápside/química , Ratones , Imagen por Resonancia Magnética/métodos , Edición Génica/métodos , Espectroscopía de Resonancia Magnética/métodos , Terapia Genética/métodos , Vectores Genéticos , Humanos , Medios de Contraste/química
12.
Biomacromolecules ; 25(5): 2890-2901, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38683736

RESUMEN

While adeno-associated virus is a leading vector for gene therapy, significant gaps remain in understanding AAV degradation and stability. In this work, we study the degradation of an engineered AAV serotype at physiological pH and ionic strength. Viral particles of varying fractions of encapsulated DNA were incubated between 30 and 60 °C, with changes in molecular weight measured by changes in total light scattering intensity at 90° over time. Mostly full vectors demonstrated a rapid decrease in molecular weight corresponding to the release of capsid DNA, followed by slow aggregation. In contrast, empty vectors demonstrated immediate, rapid colloid-type aggregation. Mixtures of full and empty capsids showed a pronounced decrease in initial aggregation that cannot be explained by a linear superposition of empty and full degradation scattering signatures, indicating interactions between capsids and ejected DNA that influenced aggregation mechanisms. This demonstrates key interactions between AAV capsids and their cargo that influence capsid degradation, aggregation, and DNA release mechanisms in a physiological solution.


Asunto(s)
Cápside , ADN Viral , Dependovirus , Dependovirus/genética , Dependovirus/química , Cápside/química , Cápside/metabolismo , Cinética , ADN Viral/química , Humanos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Concentración de Iones de Hidrógeno
13.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675928

RESUMEN

The higher-order structure (HOS) is a critical quality attribute of recombinant adeno-associated viruses (rAAVs). Evaluating the HOS of the entire rAAV capsid is challenging because of the flexibility and/or less folded nature of the VP1 unique (VP1u) and VP1/VP2 common regions, which are structural features essential for these regions to exert their functions following viral infection. In this study, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used for the structural analysis of full and empty rAAV8 capsids. We obtained 486 peptides representing 85% sequence coverage. Surprisingly, the VP1u region showed rapid deuterium uptake even though this region contains the phospholipase A2 domain composed primarily of α-helices. The comparison of deuterium uptake between full and empty capsids showed significant protection from hydrogen/deuterium exchange in the full capsid at the channel structure of the 5-fold symmetry axis. This corresponds to cryo-electron microscopy studies in which the extended densities were observed only in the full capsid. In addition, deuterium uptake was reduced in the VP1u region of the full capsid, suggesting the folding and/or interaction of this region with the encapsidated genome. This study demonstrated HDX-MS as a powerful method for probing the structure of the entire rAAV capsid.


Asunto(s)
Proteínas de la Cápside , Cápside , Dependovirus , Dependovirus/química , Dependovirus/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Cápside/química , Cápside/metabolismo , Serogrupo , Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Humanos , Deuterio/química , Espectrometría de Masas , Microscopía por Crioelectrón , Modelos Moleculares
14.
Nature ; 627(8005): 905-914, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448589

RESUMEN

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Asunto(s)
Bacteriófagos , Cápside , ADN Viral , Genoma Viral , Virión , Ensamble de Virus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/metabolismo , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Iones/análisis , Iones/química , Iones/metabolismo , Electricidad Estática , Virión/química , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética , Agua/análisis , Agua/química , Agua/metabolismo
15.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38518746

RESUMEN

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Asunto(s)
Proteínas de la Cápside , VIH-1 , Proteínas de la Cápside/metabolismo , Cápside/química , Cápside/metabolismo , Ensamble de Virus , Replicación Viral , Antivirales/farmacología
16.
Phys Rev E ; 109(2-1): 024402, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491620

RESUMEN

A minimal coarse-grained model for T=1 viral capsids assembled from 20 protein rigid trimers has been designed by extending a previously proposed form of the interaction energy written as a sum of anisotropic pairwise interactions between the trimeric capsomers. The extension of the model has been performed to properly account for the coupling between two internal coordinates: the one that measures the intercapsomer distance and the other that gives the intercapsomer dihedral angle. The model has been able to fit with less than a 10% error the atomic force microscopy (AFM) indentation experimental data for the empty capsid of the minute virus of mice (MVM), providing in this way an admissible picture of the main mechanisms behind the capsid deformations. In this scenario, the bending of the intercapsomer dihedral angle is the angular internal coordinate that can support larger deformations away from its equilibrium values, determining important features of the AFM indentation experiments as the elastic constants along the three symmetry axes of the capsid and the critical indentations. From the value of one of the parameters of our model, we conclude that trimers in the MVM must be quite oblate tops, in excellent agreement with their known structure. The transition from the linear to the nonlinear regimes sampled in the indentation process appears to be an interesting topic for future research in physical virology.


Asunto(s)
Virus Diminuto del Ratón , Virus , Animales , Ratones , Cápside/química , Proteínas de la Cápside/química , Microscopía de Fuerza Atómica
17.
J Virol ; 98(3): e0182723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305183

RESUMEN

Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.


Asunto(s)
Bacteriófago phi X 174 , Proteínas de la Cápside , ADN de Cadena Simple , ADN Viral , Proteínas de Unión al ADN , Evolución Molecular , Empaquetamiento del Genoma Viral , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/crecimiento & desarrollo , Bacteriófago phi X 174/metabolismo , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Secuencia Conservada , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Aptitud Genética , Mutación , Fenotipo , Moldes Genéticos , Virión/química , Virión/genética , Virión/crecimiento & desarrollo , Virión/metabolismo
18.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315015

RESUMEN

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Asunto(s)
Antivirales , Apoptosis , Regulación Viral de la Expresión Génica , Antígenos del Núcleo de la Hepatitis B , Virus de la Hepatitis B , Hepatocitos , Biosíntesis de Proteínas , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Cápside/química , Cápside/clasificación , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/metabolismo , Hepatitis B/virología , Antígenos del Núcleo de la Hepatitis B/biosíntesis , Antígenos del Núcleo de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Ratones Endogámicos C57BL , Ratones SCID , Replicación Viral , Línea Celular , Linfocitos T CD8-positivos/inmunología , Presentación de Antígeno
19.
Sci Adv ; 10(8): eadj1640, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394211

RESUMEN

The compartmentalization of eukaryotic cells presents considerable challenges to the herpesvirus life cycle. The herpesvirus tegument, a bulky proteinaceous aggregate sandwiched between herpesviruses' capsid and envelope, is uniquely evolved to address these challenges, yet tegument structure and organization remain poorly characterized. We use deep-learning-enhanced cryogenic electron microscopy to investigate the tegument of human cytomegalovirus virions and noninfectious enveloped particles (NIEPs; a genome packaging-aborted state), revealing a portal-biased tegumentation scheme. We resolve atomic structures of portal vertex-associated tegument (PVAT) and identify multiple configurations of PVAT arising from layered reorganization of pUL77, pUL48 (large tegument protein), and pUL47 (inner tegument protein) assemblies. Analyses show that pUL77 seals the last-packaged viral genome end through electrostatic interactions, pUL77 and pUL48 harbor a head-linker-capsid-binding motif conducive to PVAT reconfiguration, and pUL47/48 dimers form 45-nm-long filaments extending from the portal vertex. These results provide a structural framework for understanding how herpesvirus tegument facilitates and evolves during processes spanning viral genome packaging to delivery.


Asunto(s)
Proteínas de la Cápside , Citomegalovirus , Humanos , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/metabolismo , Microscopía por Crioelectrón , Proteínas de la Cápside/química , Cápside/química , Virión/química , Inteligencia Artificial
20.
Int J Biol Macromol ; 262(Pt 2): 130136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354926

RESUMEN

Alphaviruses pose a significant threat to public health. Capsid protein encoded in the alphaviral genomes constitutes an interesting therapy target, as it also serves as a protease (CP). Remarkably, it undergoes autoproteolysis, leading to the generation of the C-terminal tryptophan that localizes to the active pocket, deactivating the enzyme. Lack of activity hampers the viral replication cycle, as the virus is not capable of producing the infectious progeny. We investigated the structure and function of the CP encoded in the genome of O'nyong'nyong virus (ONNV), which has instigated outbreaks in Africa. Our research provides a high-resolution crystal structure of the ONNV CP in its active state and evaluates the enzyme's activity. Furthermore, we demonstrated a dose-dependent reduction in ONNV CP proteolytic activity when exposed to indole, suggesting that tryptophan analogs may be a promising basis for developing small molecule inhibitors. It's noteworthy that the capsid protease plays an essential role in virus assembly, binding viral glycoproteins through its glycoprotein-binding hydrophobic pocket. We showed that non-aromatic cyclic compounds like dioxane disrupt this vital interaction. Our findings provide deeper insights into ONNV's biology, and we believe they will prove instrumental in guiding the development of antiviral strategies against arthritogenic alphaviruses.


Asunto(s)
Alphavirus , Proteínas de la Cápside , Humanos , Proteínas de la Cápside/química , Cápside/química , Cápside/metabolismo , Virus O'nyong-nyong/metabolismo , Péptido Hidrolasas/metabolismo , Ideación Suicida , Triptófano/metabolismo , Alphavirus/metabolismo , Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA