Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
1.
Acc Chem Res ; 57(16): 2293-2302, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39099316

RESUMEN

ConspectusCentral to the quest of understanding the emergence of life is to uncover the role of metals, particularly iron, in shaping prebiotic chemistry. Iron, as the most abundant of the accessible transition metals on the prebiotic Earth, played a pivotal role in early biochemical processes and continues to be indispensable to modern biology. Here, we discuss our recent contributions to probing the plausibility of prebiotic complexes with iron, including heme and iron-sulfur clusters, in mediating chemistry beneficial to a protocell. Laboratory experiments and spectroscopic findings suggest plausible pathways, often facilitated by UV light, for the synthesis of heme and iron-sulfur clusters. Once formed, heme displays catalytic, peroxidase-like activity when complexed with amphiphiles. This activity could have been beneficial in two ways. First, heme could have catalytically removed a molecule (H2O2) that could have had degradative effects on a protocell. Second, heme could have helped in the synthesis of the building blocks of life by coupling the reduction of H2O2 with the oxidation of organic substrates. The necessity of amphiphiles to avoid the formation of inactive complexes of heme is telling, as the modern-day electron transport chain possesses heme embedded within a lipid membrane. Conversely, prebiotic iron-sulfur peptides have yet to be reported to partition into lipid membranes, nor have simple iron-sulfur peptides been found to be capable of participating in the synthesis of organic molecules. Instead, iron-sulfur peptides span a wide range of reduction potentials complementary to the reduction potentials of hemes. The reduction potential of iron-sulfur peptides can be tuned by the type of iron-sulfur cluster formed, e.g., [2Fe-2S] versus [4Fe-4S], or by the substitution of ligands to the metal center. Since iron-sulfur clusters easily form upon stochastic encounters between iron ions, hydrosulfide, and small organic molecules possessing a thiolate, including peptides, the likelihood of soluble iron-sulfur clusters seems to be high. What remains challenging to determine is if iron-sulfur peptides participated in early prebiotic chemistry or were recruited later when protocellular membranes evolved that were compatible with the exploitation of electron transfer for the storage of energy as a proton gradient. This problem mirrors in some ways the difficulty in deciphering the origins of metabolism as a whole. Chemistry that resembles some facets of extant metabolism must have transpired on the prebiotic Earth, but there are few clues as to how and when such chemistry was harnessed to support a (proto)cell. Ultimately, unraveling the roles of hemes and iron-sulfur clusters in prebiotic chemistry promises to deepen our understanding of the origins of life on Earth and aids the search for life elsewhere in the universe.


Asunto(s)
Hemo , Hemo/química , Hemo/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Hierro/química , Hierro/metabolismo , Azufre/química , Células Artificiales/química , Células Artificiales/metabolismo
2.
Sci Adv ; 10(34): eadn9657, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167649

RESUMEN

Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.


Asunto(s)
Células Artificiales , Lluvia , Células Artificiales/química , ARN/química , Agua/química
3.
Proc Natl Acad Sci U S A ; 121(36): e2404790121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39186653

RESUMEN

Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.


Asunto(s)
Células Artificiales , Núcleo Celular , Biología Sintética , Biología Sintética/métodos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células Artificiales/metabolismo , Transducción de Señal , Citoplasma/metabolismo , Comunicación Celular
4.
Nat Commun ; 15(1): 7397, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191726

RESUMEN

Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.


Asunto(s)
Células Artificiales , ADN , Células Artificiales/metabolismo , Células Artificiales/química , ADN/química , MicroARNs/metabolismo , MicroARNs/genética , Computadores Moleculares , Nanotecnología/métodos
5.
Geobiology ; 22(4): e12611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39020475

RESUMEN

The osmotic rupture of a cell, its osmotic lysis or cytolysis, is a phenomenon that active biological cell volume regulation mechanisms have evolved in the cell membrane to avoid. How then, at the origin of life, did the first protocells survive prior to such active processes? The pores of alkaline hydrothermal vents in the oceans form natural nanoreactors in which osmosis across a mineral membrane plays a fundamental role. Here, we discuss the dynamics of lysis and its avoidance in an abiotic system without any active mechanisms, reliant upon self-organized behaviour, similar to the first self-organized mineral membranes within which complex chemistry may have begun to evolve into metabolism. We show that such mineral nanoreactors could function as protocells without exploding because their self-organized dynamics have a large regime in parameter space where osmotic lysis does not occur and homeostasis is possible. The beginnings of Darwinian evolution in proto-biochemistry must have involved the survival of protocells that remained within such a safe regime.


Asunto(s)
Células Artificiales , Origen de la Vida , Ósmosis , Células Artificiales/metabolismo , Minerales/metabolismo , Minerales/química , Presión Osmótica , Membrana Celular/metabolismo
6.
Acc Chem Res ; 57(14): 1885-1895, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968602

RESUMEN

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.


Asunto(s)
Células Artificiales , Catálisis , Células Artificiales/química , Células Artificiales/metabolismo , Origen de la Vida
7.
J Am Chem Soc ; 146(31): 21847-21858, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042264

RESUMEN

The bottom-up construction of artificial cells is beneficial for understanding cell working mechanisms. The glycolysis metabolism mimicry inside artificial cells is challenging. Herein, the glycolytic pathway (Entner-Doudoroff pathway in archaea) is reconstituted inside artificial cells. The glycolytic pathway comprising glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxygluconate aldolase (KDGA) converts glucose molecules to pyruvate molecules. Inside artificial cells, pyruvate molecules are further converted into alanine with the help of alanine dehydrogenase (AlaDH) to build a metabolic pathway for synthesizing amino acid. On the other hand, the pyruvate molecules from glycolysis stimulate the living mitochondria to produce ATP inside artificial cells, which further trigger actin monomers to polymerize to form actin filaments. With the addition of methylcellulose inside the artificial cell, the actin filaments form adjacent to the inner lipid bilayer, deforming the artificial cell from a spherical shape to a spindle shape. The spindle-shaped artificial cell reverses to a spherical shape by depolymerizing the actin filament upon laser irradiation. The glycolytic pathway and its further extension to produce amino acids (or ATP) inside artificial cells pave the path to build functional artificial cells with more complicated metabolic pathways.


Asunto(s)
Aminoácidos , Células Artificiales , Glucólisis , Aminoácidos/metabolismo , Aminoácidos/química , Células Artificiales/metabolismo , Células Artificiales/química
8.
Acc Chem Res ; 57(15): 2058-2066, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39005057

RESUMEN

ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism.The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA.Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles.The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.


Asunto(s)
Células Artificiales , Pliegue del ARN , ARN Catalítico , ARN , Células Artificiales/química , Células Artificiales/metabolismo , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN/química , ARN/metabolismo , Evolución Molecular
9.
ACS Synth Biol ; 13(8): 2436-2446, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025476

RESUMEN

Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.


Asunto(s)
Bioimpresión , Polietilenglicoles , Liposomas Unilamelares , Humanos , Bioimpresión/métodos , Polietilenglicoles/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Ingeniería de Tejidos/métodos , Células Artificiales/metabolismo , Células Artificiales/química , Lípidos/química
10.
Nat Commun ; 15(1): 5645, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969629

RESUMEN

Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics. Here, we design and assemble a monolayer of synthetic cell-mimics and examine their collective behaviour. By systematically increasing the persistence time of self-propulsion, we discovered a cell shape-driven, density-independent, re-entrant jamming transition. Notably, we observed cell shape and shape variability were mutually constrained in the confluent limit and followed the same universal scaling as that observed in confluent epithelia. Dynamical heterogeneities, however, did not conform to this scaling, with the fast cells showing suppressed shape variability, which our simulations revealed is due to a transient confinement effect of these cells by their slower neighbors. Our experiments unequivocally establish a morphodynamic link, demonstrating that geometric constraints alone can dictate epithelial jamming/unjamming.


Asunto(s)
Forma de la Célula , Células Artificiales , Movimiento Celular , Modelos Biológicos , Animales , Células Epiteliales , Humanos
11.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2100-2119, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044578

RESUMEN

One of the main goals of synthetic biology is to build artificial cells in a bottom-up manner, which not only facilitates the deep understanding of the origin of life and cell function but also plays a critical role in the research fields such as the development of artificial cell chassis, tissue models, engineering drug delivery systems, and drug screening tools. However, achieving this goal is extremely challenging. The complexity of cell structures and the miniaturization and diversity of basic modules pose high requirements for the construction methods. The microfluidic chip, as an advanced microanalysis system, serves as an effective tool for building artificial cells. It can accurately control the structure and local microenvironment of artificial cells, becoming the preferred approach for the current research on synthetic life. This article reviewed the methods of constructing, manipulating, and analyzed artificial cells based on microfluidic chips, emphasized the importance of the microenvironment for life systems and artificial self-sustaining systems. In addition, this article demonstrated the wide applications of artificial cells in multiple critical biomedical fields. Exploring the advantages, disadvantages, and application performance of different microfluidic methods can enrich our knowledge about artificial cell research. Finally, we made an outlook on the development of artificial cell research based on microfluidics, expecting that this field can achieve greater breakthroughs and progress.


Asunto(s)
Células Artificiales , Biología Sintética , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Dispositivos Laboratorio en un Chip
12.
Angew Chem Int Ed Engl ; 63(34): e202407472, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847278

RESUMEN

The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.


Asunto(s)
Células Artificiales , Células Artificiales/química , Polímeros/química , Nanopartículas/química
13.
Chemistry ; 30(48): e202401593, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38923644

RESUMEN

Bioinspired molecular engineering strategies have emerged as powerful tools that significantly enhance the development of novel therapeutics, improving efficacy, specificity, and safety in disease treatment. Recent advancements have focused on identifying and utilizing disease-associated biomarkers to optimize drug activity and address challenges inherent in traditional therapeutics, such as frequent drug administrations, poor patient adherence, and increased risk of adverse effects. In this review, we provide a comprehensive overview of the latest developments in bioinspired artificial systems (BAS) that use molecular engineering to tailor therapeutic responses to drugs in the presence of disease-specific biomarkers. We examine the transition from open-loop systems, which rely on external cues, to closed-loop feedback systems capable of autonomous self-regulation in response to disease-associated biomarkers. We detail various BAS modalities designed to achieve biomarker-driven therapy, including activatable prodrug molecules, smart drug delivery platforms, autonomous artificial cells, and synthetic receptor-based cell therapies, elucidating their operational principles and practical in vivo applications. Finally, we discuss the current challenges and future perspectives in the advancement of BAS-enabled technology and envision that ongoing advancements toward more programmable and customizable BAS-based therapeutics will significantly enhance precision medicine.


Asunto(s)
Biomarcadores , Sistemas de Liberación de Medicamentos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Profármacos/química , Profármacos/uso terapéutico , Medicina de Precisión/métodos , Células Artificiales/química , Animales
14.
J Vis Exp ; (207)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38884477

RESUMEN

Synthetic droplets and condensates are becoming increasingly common constituents of advanced biomimetic systems and synthetic cells, where they can be used to establish compartmentalization and sustain life-like responses. Synthetic DNA nanostructures have demonstrated significant potential as condensate-forming building blocks owing to their programmable shape, chemical functionalization, and self-assembly behavior. We have recently demonstrated that amphiphilic DNA "nanostars", obtained by labeling DNA junctions with hydrophobic moieties, constitute a particularly robust and versatile solution. The resulting amphiphilic DNA condensates can be programmed to display complex, multi-compartment internal architectures, structurally respond to various external stimuli, synthesize macromolecules, capture and release payloads, undergo morphological transformations, and interact with live cells. Here, we demonstrate protocols for preparing amphiphilic DNA condensates starting from constituent DNA oligonucleotides. We will address (i) single-component systems forming uniform condensates, (ii) two-component systems forming core-shell condensates, and (iii) systems in which the condensates are modified to support in vitro transcription of RNA nanostructures.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Interacciones Hidrofóbicas e Hidrofílicas , Células Artificiales/química , Condensados Biomoleculares/química
15.
Eur Phys J E Soft Matter ; 47(6): 37, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829453

RESUMEN

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.


Asunto(s)
Células Artificiales , Polímeros , Células Artificiales/química , Polímeros/química , Polímeros/síntesis química , Emulsiones/química , Cápsulas/química , Microfluídica/métodos , Agua/química , Técnicas Analíticas Microfluídicas , Proteínas/química
16.
Biomacromolecules ; 25(7): 4087-4094, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828905

RESUMEN

Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)-block-poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.


Asunto(s)
Células Artificiales , Liposomas , Orgánulos , Células Artificiales/química , Orgánulos/metabolismo , Orgánulos/química , Liposomas/química , Polietilenglicoles/química , Membrana Celular/metabolismo , Membrana Celular/química
17.
Sci Adv ; 10(24): eadk9731, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865458

RESUMEN

Nonlinear biomolecular interactions on membranes drive membrane remodeling crucial for biological processes including chemotaxis, cytokinesis, and endocytosis. The complexity of biomolecular interactions, their redundancy, and the importance of spatiotemporal context in membrane organization impede understanding of the physical principles governing membrane mechanics. Developing a minimal in vitro system that mimics molecular signaling and membrane remodeling while maintaining physiological fidelity poses a major challenge. Inspired by chemotaxis, we reconstructed chemically regulated actin polymerization inside vesicles, guiding membrane self-organization. An external, undirected chemical input induced directed actin polymerization and membrane deformation uncorrelated with upstream biochemical cues, suggesting symmetry breaking. A biophysical model incorporating actin dynamics and membrane mechanics proposes that uneven actin distributions cause nonlinear membrane deformations, consistent with experimental findings. This protocellular system illuminates the interplay between actin dynamics and membrane shape during symmetry breaking, offering insights into chemotaxis and other cell biological processes.


Asunto(s)
Actinas , Células Artificiales , Membrana Celular , Polimerizacion , Actinas/metabolismo , Células Artificiales/metabolismo , Células Artificiales/química , Membrana Celular/metabolismo , Quimiotaxis , Modelos Biológicos
18.
Int J Biol Sci ; 20(8): 2833-2859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904025

RESUMEN

Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.


Asunto(s)
Inmunoterapia , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Animales , Células Artificiales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos
19.
Nat Commun ; 15(1): 4956, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858376

RESUMEN

A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.


Asunto(s)
Células Artificiales , Proteínas Fluorescentes Verdes , Plásmidos , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Células Artificiales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
20.
J Phys Chem Lett ; 15(19): 5295-5305, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38722703

RESUMEN

Coacervate microdroplets, a protocell model in exploring the origin of life, have gained significant attention. Clay minerals, catalysts during the origin of life, are crucial in the chemical evolution of small molecules into biopolymers. However, our understanding of the relationship between clay minerals and the formation and evolution of protocells on early Earth remains limited. In this work, the nanoclay montmorillonite nanosheet (MMT-Na) was employed to investigate its interaction with coacervate microdroplets formed by oligolysine (K10) and adenine nucleoside triphosphate (ATP). As an anionic component, MMT-Na was noted to promote the formation of coacervate microdroplets. Furthermore, the efficiency of ssDNA enrichment and the degree of ssDNA hybridization within these microdroplets were significantly improved. By combining inorganic nanoclay with organic biopolymers, our work provides an efficient way to enrich genetic biomolecules in the primitive Earth environment and builds a nanoclay-based coacervate microdroplets, shedding new light on life's origin and protocell evolution.


Asunto(s)
Células Artificiales , Bentonita , Células Artificiales/química , Bentonita/química , ADN de Cadena Simple/química , Arcilla/química , Adenosina Trifosfato/química , Nanoestructuras/química , Origen de la Vida , Hibridación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA