Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Otol Neurotol ; 45(9): 1059-1067, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39264922

RESUMEN

PURPOSE: Gentamicin is a broad-spectrum antibiotic commonly used in clinical practice. However, the drug causes side effects of ototoxicity, leading to disruption in balance functionality. This study investigated the effect of gastrodin, a prominent compound present in Gastrodia, and the underlying mechanism on the development of gentamicin-induced vestibular dysfunction. METHODS: Wild-type C57BL/6 mice were randomly assigned to three groups: control, gentamicin, and gentamicin + gastrodin groups. The extent of gentamicin-induced vestibular impairment was assessed through a series of tests including the swimming test, contact righting reflex test, and air-righting reflex. Alterations in vestibular hair cells were monitored through immunofluorescence assay, and cellular apoptosis was observed using TUNEL staining. The mRNA and protein expression of Notch1, Jagged1, and Hes1 was quantified through qRT-PCR, immunofluorescence, and western blot analyses. RESULTS: Gentamicin treatment led to pronounced deficits in vestibular function and otolith organ hair cells in mice. Nevertheless, pretreatment with gastrodin significantly alleviated these impairments. Additionally, the Notch signaling pathway was activated by gentamicin in the utricle, contributing to a notable increase in the expression levels of apoptosis-associated proteins. By contrast, gastrodin treatment effectively suppressed the Notch signaling pathway, thereby mitigating the occurrence of apoptosis. CONCLUSION: Collectively, these findings underscore the crucial role of gastrodin in safeguarding against gentamicin-induced vestibular dysfunction through the modulation of the Notch signaling pathway. This study suggests the potential of gastrodin as a promising therapeutic agent for preventing vestibular injuries.


Asunto(s)
Alcoholes Bencílicos , Gentamicinas , Glucósidos , Ratones Endogámicos C57BL , Transducción de Señal , Animales , Gentamicinas/toxicidad , Alcoholes Bencílicos/farmacología , Transducción de Señal/efectos de los fármacos , Glucósidos/farmacología , Ratones , Apoptosis/efectos de los fármacos , Enfermedades Vestibulares/inducido químicamente , Enfermedades Vestibulares/patología , Antibacterianos/toxicidad , Antibacterianos/farmacología , Receptor Notch1/metabolismo , Receptor Notch1/genética , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/metabolismo , Masculino
2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201487

RESUMEN

Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 µM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 µM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 µM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.


Asunto(s)
Fluoxetina , Gerbillinae , Fluoxetina/farmacología , Animales , Potenciales de la Membrana/efectos de los fármacos , Vestíbulo del Laberinto/efectos de los fármacos , Vestíbulo del Laberinto/metabolismo , Técnicas de Placa-Clamp , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Canales de Potasio/metabolismo , Masculino , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/metabolismo
3.
Sci Rep ; 14(1): 15260, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956136

RESUMEN

KCNQ4 is a voltage-gated K+ channel was reported to distribute over the basolateral surface of type 1 vestibular hair cell and/or inner surface of calyx and heminode of the vestibular nerve connected to the type 1 vestibular hair cells of the inner ear. However, the precise localization of KCNQ4 is still controversial and little is known about the vestibular phenotypes caused by KCNQ4 dysfunction or the specific role of KCNQ4 in the vestibular organs. To investigate the role of KCNQ4 in the vestibular organ, 6-g hypergravity stimulation for 24 h, which represents excessive mechanical stimulation of the sensory epithelium, was applied to p.W277S Kcnq4 transgenic mice. KCNQ4 was detected on the inner surface of calyx of the vestibular afferent in transmission electron microscope images with immunogold labelling. Vestibular function decrease was more severe in the Kcnq4p.W277S/p.W277S mice than in the Kcnq4+/+ and Kcnq4+/p.W277S mice after the stimulation. The vestibular function loss was resulted from the loss of type 1 vestibular hair cells, which was possibly caused by increased depolarization duration. Retigabine, a KCNQ activator, prevented hypergravity-induced vestibular dysfunction and hair cell loss. Patients with KCNQ4 mutations also showed abnormal clinical vestibular function tests. These findings suggest that KCNQ4 plays an essential role in calyx and afferent of type 1 vestibular hair cell preserving vestibular function against excessive mechanical stimulation.


Asunto(s)
Células Ciliadas Vestibulares , Canales de Potasio KCNQ , Ratones Transgénicos , Animales , Canales de Potasio KCNQ/metabolismo , Canales de Potasio KCNQ/genética , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patología , Ratones , Fenilendiaminas/farmacología , Carbamatos/farmacología , Vestíbulo del Laberinto/metabolismo , Vestíbulo del Laberinto/patología , Vestíbulo del Laberinto/fisiopatología
4.
Sci Rep ; 14(1): 15296, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961203

RESUMEN

Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.


Asunto(s)
Traumatismos por Explosión , Células Ciliadas Vestibulares , Ganglio Espiral de la Cóclea , Animales , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/patología , Ratas , Traumatismos por Explosión/prevención & control , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/metabolismo , Masculino , Oxidación-Reducción , Ratas Sprague-Dawley , Cóclea/efectos de los fármacos , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Estrés Oxidativo/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/patología
5.
Nat Commun ; 15(1): 4833, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844821

RESUMEN

Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.


Asunto(s)
Regeneración , Análisis de la Célula Individual , Transcriptoma , Humanos , Animales , Regeneración/genética , Ratones , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/citología , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patología , Oído Interno/metabolismo , Oído Interno/citología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Células Ciliadas Vestibulares/metabolismo , Femenino , Perfilación de la Expresión Génica
6.
Hear Res ; 448: 109035, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38763033

RESUMEN

The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.


Asunto(s)
Sáculo y Utrículo , Animales , Sáculo y Utrículo/fisiología , Evolución Biológica , Humanos , Aves/fisiología , Mamíferos/fisiología , Células Ciliadas Vestibulares/fisiología , Vestíbulo del Laberinto/fisiología , Células Ciliadas Auditivas/fisiología , Especificidad de la Especie , Regeneración
7.
Proc Natl Acad Sci U S A ; 121(3): e2318270121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194445

RESUMEN

During auditory transduction, sound-evoked vibrations of the hair cell stereociliary bundles open mechanotransducer (MET) ion channels via tip links extending from one stereocilium to its neighbor. How tension in the tip link is delivered to the channel is not fully understood. The MET channel comprises a pore-forming subunit, transmembrane channel-like protein (TMC1 or TMC2), aided by several accessory proteins, including LHFPL5 (lipoma HMGIC fusion partner-like 5). We investigated the role of LHFPL5 in transduction by comparing MET channel activation in outer hair cells of Lhfpl5-/- knockout mice with those in Lhfpl5+/- heterozygotes. The 10 to 90 percent working range of transduction in Tmc1+/+; Lhfpl5+/- was 52 nm, from which the single-channel gating force, Z, was evaluated as 0.34 pN. However, in Tmc1+/+; Lhfpl5-/- mice, the working range increased to 123 nm and Z more than halved to 0.13 pN, indicating reduced sensitivity. Tip link tension is thought to activate the channel via a gating spring, whose stiffness is inferred from the stiffness change on tip link destruction. The gating stiffness was ~40 percent of the total bundle stiffness in wild type but was virtually abolished in Lhfpl5-/-, implicating LHFPL5 as a principal component of the gating spring. The mutation Tmc1 p.D569N reduced the LHFPL5 immunolabeling in the stereocilia and like Lhfpl5-/- doubled the MET working range, but other deafness mutations had no effect on the dynamic range. We conclude that tip-link tension is transmitted to the channel primarily via LHFPL5; residual activation without LHFPL5 may occur by direct interaction between PCDH15 and TMC1.


Asunto(s)
Células Ciliadas Auditivas Externas , Células Ciliadas Vestibulares , Animales , Ratones , Heterocigoto , Proteínas de la Membrana/genética , Ratones Noqueados , Estereocilios , Vibración
8.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050104

RESUMEN

Outer hair cells (OHCs) of the organ of Corti (OoC), acting as bidirectional cellular mechanoelectrical transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including the sensory inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters' (DC) and outer pillar cells (OPC), to enable the sensitivity and exquisite frequency selectivity of the mammalian cochlea and to transmit its responses to the auditory nerve. To selectively activate DCs and OPCs in male and female mice, we conditionally expressed in them a hyperpolarizing halorhodopsin (HOP), a light-gated inward chloride ion pump, and measured extracellular receptor potentials (ERPs) and their DC component (ERPDCs) from the cortilymph, which fills the OoC fluid spaces, and compared the responses with similar potentials from HOP-/- littermates. The compound action potentials (CAP) of the auditory nerve were measured as an indication of IHC activity and transmission of cochlear responses to the CNS. HOP light-activated hyperpolarization of DCs and OPCs suppressed cochlear amplification through changing the timing of its feedback, altered basilar membrane (BM) responses to tones at all measured levels and frequencies, and reduced IHC excitation. HOP activation findings reported here complement recent studies that revealed channelrhodopsin activation depolarized DCs and OPCs and effectively bypassed, rather than blocked, the control of OHC mechanical and electrical responses to sound and their contribution to timed and directed electromechanical feedback to the mammalian cochlea. Moreover, our findings identify DCs and OPCs as potential targets for the treatment of noise-induced hearing loss.


Asunto(s)
Células Ciliadas Auditivas Externas , Células Ciliadas Vestibulares , Femenino , Masculino , Ratones , Animales , Células Ciliadas Auditivas Externas/fisiología , Optogenética , Cóclea/fisiología , Células Ciliadas Auditivas Internas/fisiología , Órgano Espiral/fisiología , Mamíferos
9.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078650

RESUMEN

Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.


Asunto(s)
Células Ciliadas Vestibulares , Pérdida Auditiva , Ratones , Animales , Células Ciliadas Auditivas Internas , Cóclea/fisiología , Pérdida Auditiva/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
10.
Elife ; 122023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019267

RESUMEN

The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Reproducibilidad de los Resultados , Reflejo Vestibuloocular , Cabello
11.
Proc Natl Acad Sci U S A ; 120(49): e2311539120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019860

RESUMEN

In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.


Asunto(s)
Células Ciliadas Auditivas Internas , Células Ciliadas Vestibulares , Animales , Ratones , Células Ciliadas Auditivas Internas/metabolismo , Ácido Glutámico/metabolismo , Audición/fisiología , Células Ciliadas Vestibulares/metabolismo , Sinapsis/metabolismo , Cóclea/metabolismo , Calcio/metabolismo
12.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37775302

RESUMEN

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Animales , Cobayas , Potenciales de Acción/fisiología , Células Ciliadas Vestibulares/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Mamíferos
13.
Proc Natl Acad Sci U S A ; 120(31): e2217033120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487063

RESUMEN

Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.


Asunto(s)
Tronco Encefálico , Células Ciliadas Vestibulares , Animales , Ratones , Cóclea , Células Ciliadas Auditivas Internas , Neuronas
14.
Development ; 150(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37381908

RESUMEN

The inner ear sensory epithelia contain mechanosensitive hair cells and supporting cells. Both cell types arise from SOX2-expressing prosensory cells, but the mechanisms underlying the diversification of these cell lineages remain unclear. To determine the transcriptional trajectory of prosensory cells, we established a SOX2-2A-ntdTomato human embryonic stem cell line using CRISPR/Cas9, and performed single-cell RNA-sequencing analyses with SOX2-positive cells isolated from inner ear organoids at various time points between differentiation days 20 and 60. Our pseudotime analysis suggests that vestibular type II hair cells arise primarily from supporting cells, rather than bi-fated prosensory cells in organoids. Moreover, ion channel- and ion-transporter-related gene sets were enriched in supporting cells versus prosensory cells, whereas Wnt signaling-related gene sets were enriched in hair cells versus supporting cells. These findings provide valuable insights into how prosensory cells give rise to hair cells and supporting cells during human inner ear development, and may provide a clue to promote hair cell regeneration from resident supporting cells in individuals with hearing loss or balance disorders.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Humanos , Organoides , Células Ciliadas Auditivas , Diferenciación Celular/genética
15.
Hear Res ; 435: 108819, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276687

RESUMEN

Viral vector gene therapy is an attractive strategy to treat hearing loss. Since hearing loss is due to a variety of pathogenic signaling cascades in distinct cells, viral vectors that can express large or multiple genes in a cell-type specific manner are needed. Helper-dependent adenoviral vectors (HdAd) are safe viral vectors with a large packaging capacity (-36 kb). Despite the potential of HdAd, its use in the inner ear is largely unexplored. Therefore, to evaluate the utility of HdAd for inner ear gene therapy, we created two HdAd vectors that use distinct cellular receptors for transduction: HdAd Serotype Type 5 (HdAd5), the Coxsackie-Adenovirus Receptor (CAR) and a chimeric HdAd 5/35, the human CD46+ receptor (hCD46). We delivered these vectors through the round window (RW) or scala media in CBA/J, C57Bl6/J and hCD46 transgenic mice. Immunostaining in conjunction with confocal microscopy of cochlear sections revealed that multiple cell types were transduced using HdAd5 and HdAd 5/35 in all mouse models. Delivery of HdAd5 via RW in the C57Bl/6 J or CBA/J cochlea resulted in transduced mesenchymal cells of the peri­lymphatic lining and modiolar region while scala media delivery resulted in transduction of supporting cells and inner hair cells. Hd5/35 transduction was CD46 dependent and RW delivery of HdAd5/35 in the hCD46 mouse model resulted in a similar transduction pattern as HdAd5 in the peri­lymphatic lining and modiolar region in the cochlea. Our data indicate that HdAd vectors are promising vectors for use in inner ear gene therapy to treat some causes of hearing loss.


Asunto(s)
Sordera , Células Ciliadas Vestibulares , Pérdida Auditiva , Ratones , Animales , Humanos , Adenoviridae/genética , Ratones Endogámicos CBA , Terapia Genética , Ratones Transgénicos , Pérdida Auditiva/genética , Vectores Genéticos , Sordera/terapia
16.
J Neurophysiol ; 129(6): 1468-1481, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37198134

RESUMEN

Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Animales , Células Ciliadas Vestibulares/fisiología , Neuronas Aferentes , Potenciales de Acción/fisiología , Potenciales de la Membrana , Mamíferos
17.
Arch Toxicol ; 97(7): 1943-1961, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195449

RESUMEN

Hair cell (HC) loss by epithelial extrusion has been described to occur in the rodent vestibular system during chronic 3,3'-iminodipropionitrile (IDPN) ototoxicity. This is preceded by dismantlement of the calyceal junction in the contact between type I HC (HCI) and calyx afferent terminals. Here, we evaluated whether these phenomena have wider significance. First, we studied rats receiving seven different doses of streptomycin, ranging from 100 to 800 mg/kg/day, for 3-8 weeks. Streptomycin caused loss of vestibular function associated with partial loss of HCI and decreased expression of contactin-associated protein (CASPR1), denoting calyceal junction dismantlement, in the calyces encasing the surviving HCI. Additional molecular and ultrastructural data supported the conclusion that HC-calyx detachment precede HCI loss by extrusion. Animals allowed to survive after the treatment showed functional recuperation and rebuilding of the calyceal junction. Second, we evaluated human sensory epithelia obtained during therapeutic labyrinthectomies and trans-labyrinthine tumour excisions. Some samples showed abnormal CASPR1 label strongly suggestive of calyceal junction dismantlement. Therefore, reversible dismantlement of the vestibular calyceal junction may be a common response triggered by chronic stress, including ototoxic stress, before HCI loss. This may partly explain clinical observations of reversion in function loss after aminoglycoside exposure.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Humanos , Ratas , Animales , Estreptomicina/toxicidad , Vestíbulo del Laberinto/patología , Epitelio/patología , Células Ciliadas Vestibulares/patología , Células Ciliadas Auditivas/patología
18.
PLoS Biol ; 21(3): e3002041, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36947567

RESUMEN

Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly specialized cells subdivided into outer hair cells (OHCs) and inner hair cells (IHCs). Light microscopy tools allow for imaging of auditory hair cells along the full length of the cochlea, often yielding more data than feasible to manually analyze. Currently, there are no widely applicable tools for fast, unsupervised, unbiased, and comprehensive image analysis of auditory hair cells that work well either with imaging datasets containing an entire cochlea or smaller sampled regions. Here, we present a highly accurate machine learning-based hair cell analysis toolbox (HCAT) for the comprehensive analysis of whole cochleae (or smaller regions of interest) across light microscopy imaging modalities and species. The HCAT is a software that automates common image analysis tasks such as counting hair cells, classifying them by subtype (IHCs versus OHCs), determining their best frequency based on their location along the cochlea, and generating cochleograms. These automated tools remove a considerable barrier in cochlear image analysis, allowing for faster, unbiased, and more comprehensive data analysis practices. Furthermore, HCAT can serve as a template for deep learning-based detection tasks in other types of biological tissue: With some training data, HCAT's core codebase can be trained to develop a custom deep learning detection model for any object on an image.


Asunto(s)
Cóclea , Células Ciliadas Vestibulares , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Audición
19.
J Neurosci ; 43(18): 3219-3231, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37001993

RESUMEN

The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.


Asunto(s)
Células Ciliadas Vestibulares , Animales , Ratones , Calcio/metabolismo , Células Ciliadas Vestibulares/metabolismo , Integrinas , Ratones Noqueados , Estereocilios/metabolismo
20.
J Gerontol A Biol Sci Med Sci ; 78(6): 920-929, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840917

RESUMEN

Cholinergic circuits in the central nervous system are vulnerable to age-related functional decline, but it is not known if aging impacts cholinergic signaling in the vestibular sensory organs, which are critically important to balance maintenance and visual gaze stability. We have previously shown cholinergic neurotransmission between vestibular efferent terminals and type II mechanosensory hair cells requires the alpha9 (Chrna9) nicotinic receptor subunit. Homozygous knockout of the alpha9 subunit causes vestibulo-ocular reflex adaptation deficits that mirror those observed in aged mice. This prompted examination of cholinergic signaling in the vestibular sensory organs of aged mice. We confirmed older (>24 months) mice had impaired performance in a balance beam task compared to young (3-4 months) adult mice. While there was no qualitative loss of cholinergic axon varicosities in the crista ampullaris of old mice, qPCR analysis revealed reduced expression of nicotinic receptor subunit genes Chrna1, Chrna9, and Chrna10 in the cristae of old relative to young mice. Functionally, single-cell patch clamp recordings taken from type II vestibular hair cells exposed to acetylcholine show reduced conductance through alpha9/10 subunit-containing nicotinic receptors in older mice, despite preserved passive membrane properties and voltage-activated conductances. These findings suggest that cholinergic signaling in the peripheral vestibular sensory organs is vulnerable to aging processes, manifesting in dynamic molecular and functional age-related changes. Given the importance of these organs to our everyday activities, and the dramatic increase in fall incidence in the older, further investigation into the mechanisms of altered peripheral vestibular function in older humans is warranted.


Asunto(s)
Células Ciliadas Vestibulares , Receptores Nicotínicos , Vestíbulo del Laberinto , Humanos , Ratones , Animales , Anciano , Ratones Endogámicos C57BL , Vestíbulo del Laberinto/metabolismo , Células Ciliadas Vestibulares/metabolismo , Colinérgicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA