Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.793
Filtrar
1.
Nature ; 634(8036): 1187-1195, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39478207

RESUMEN

Temporal ordering of cellular events offers fundamental insights into biological phenomena. Although this is traditionally achieved through continuous direct observations1,2, an alternative solution leverages irreversible genetic changes, such as naturally occurring mutations, to create indelible marks that enables retrospective temporal ordering3-5. Using a multipurpose, single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo, with incorporation of cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during mouse embryonic development, unconventional developmental relationships between cell types and new epithelial progenitor states by their unique genetic histories. Analysis of mouse adenomas, coupled to multiomic and single-cell profiling of human precancers, with clonal analysis of 418 human polyps, demonstrated the occurrence of polyclonal initiation in 15-30% of colonic precancers, showing their origins from multiple normal founders. Our study presents a multimodal framework that lays the foundation for in vivo recording, integrating synthetic or natural indelible genetic changes with single-cell analyses, to explore the origins and timing of development and tumorigenesis in mammalian systems.


Asunto(s)
Linaje de la Célula , Lesiones Precancerosas , Análisis de la Célula Individual , Animales , Ratones , Humanos , Femenino , Factores de Tiempo , Lesiones Precancerosas/patología , Lesiones Precancerosas/genética , Masculino , Desarrollo Embrionario/genética , Adenoma/patología , Adenoma/genética , Células Clonales/metabolismo , Células Clonales/citología , Carcinogénesis/genética , Carcinogénesis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Especificidad de Órganos , Sistemas CRISPR-Cas/genética
2.
Nature ; 633(8028): 198-206, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232148

RESUMEN

Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.


Asunto(s)
Transformación Celular Neoplásica , Glándulas Mamarias Animales , Mutación , Animales , Femenino , Ratones , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linaje de la Célula/genética , Autorrenovación de las Células/genética , Transformación Celular Neoplásica/genética , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/patología , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Estral , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología
3.
Nature ; 634(8034): 693-701, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232158

RESUMEN

Traumatic injuries to the central nervous system (CNS) afflict millions of individuals worldwide1, yet an effective treatment remains elusive. Following such injuries, the site is populated by a multitude of peripheral immune cells, including T cells, but a comprehensive understanding of the roles and antigen specificity of these endogenous T cells at the injury site has been lacking. This gap has impeded the development of immune-mediated cellular therapies for CNS injuries. Here, using single-cell RNA sequencing, we demonstrated the clonal expansion of mouse and human spinal cord injury-associated T cells and identified that CD4+ T cell clones in mice exhibit antigen specificity towards self-peptides of myelin and neuronal proteins. Leveraging mRNA-based T cell receptor (TCR) reconstitution, a strategy aimed to minimize potential adverse effects from prolonged activation of self-reactive T cells, we generated engineered transiently autoimmune T cells. These cells demonstrated notable neuroprotective efficacy in CNS injury models, in part by modulating myeloid cells via IFNγ. Our findings elucidate mechanistic insight underlying the neuroprotective function of injury-responsive T cells and pave the way for the future development of T cell therapies for CNS injuries.


Asunto(s)
Autoinmunidad , Ingeniería Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Sistema Nervioso Central , Neuroprotección , Traumatismos de la Médula Espinal , Linfocitos T , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/citología , Ingeniería Celular/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/lesiones , Células Clonales/citología , Células Clonales/inmunología , Modelos Animales de Enfermedad , Interferón gamma/inmunología , Ratones Endogámicos C57BL , Vaina de Mielina/inmunología , Células Mieloides/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Análisis de Expresión Génica de una Sola Célula , Proteínas del Tejido Nervioso/inmunología
4.
Stem Cell Reports ; 19(8): 1189-1204, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094562

RESUMEN

It has been proposed that adult hematopoiesis is sustained by multipotent progenitors (MPPs) specified during embryogenesis. Adult-like hematopoietic stem cell (HSC) and MPP immunophenotypes are present in the fetus, but knowledge of their functional capacity is incomplete. We found that fetal MPP populations were functionally similar to adult cells, albeit with some differences in lymphoid output. Clonal assessment revealed that lineage biases arose from differences in patterns of single-/bi-lineage differentiation. Long-term (LT)- and short-term (ST)-HSC populations were distinguished from MPPs according to capacity for clonal multilineage differentiation. We discovered that a large cohort of long-term repopulating units (LT-RUs) resides within the ST-HSC population; a significant portion of these were labeled using Flt3-cre. This finding has two implications: (1) use of the CD150+ LT-HSC immunophenotype alone will significantly underestimate the size and diversity of the LT-RU pool and (2) LT-RUs in the ST-HSC population have the attributes required to persist into adulthood.


Asunto(s)
Linaje de la Célula , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular , Feto/citología , Inmunofenotipificación , Hematopoyesis , Células Clonales/citología
5.
STAR Protoc ; 5(3): 103168, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38968076

RESUMEN

The lineage relationship of clonally-related cells offers important insights into the ontogeny and cytoarchitecture of the brain in health and disease. Here, we provide a protocol to concurrently assess cell lineage relationship and cell-type identity among clonally-related cells in situ. We first describe the preparation and screening of acute brain slices containing clonally-related cells labeled using mosaic analysis with double markers (MADM). We then outline steps to collect RNA from individual cells for downstream applications and cell-type identification using RNA sequencing. For complete details on the use and execution of this protocol, please refer to Cheung et al.1.


Asunto(s)
Encéfalo , Linaje de la Célula , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Células Clonales/citología , Análisis de Secuencia de ARN/métodos
6.
Phys Rev E ; 109(6-1): 064407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39021023

RESUMEN

The self-organization of cells into complex tissues relies on a tight coordination of cell behavior. Identifying the cellular processes driving tissue growth is key to understanding the emergence of tissue forms and devising targeted therapies for aberrant growth, such as in cancer. Inferring the mode of tissue growth, whether it is driven by cells on the surface or by cells in the bulk, is possible in cell culture experiments but difficult in most tissues in living organisms (in vivo). Genetic tracing experiments, where a subset of cells is labeled with inheritable markers, have become important experimental tools to study cell fate in vivo. Here we show that the mode of tissue growth is reflected in the size distribution of the progeny of marked cells. To this end, we derive the clone size distributions using analytical calculations in the limit of negligible cell migration and cell death, and we test our predictions with an agent-based stochastic sampling technique. We show that for surface-driven growth the clone size distribution takes a characteristic power-law form with an exponent determined by fluctuations of the tissue surface. Our results propose a possible way of determining the mode of tissue growth from genetic tracing experiments.


Asunto(s)
Modelos Biológicos , Procesos Estocásticos , Proliferación Celular , Células Clonales/citología , Animales , Movimiento Celular
7.
Nature ; 632(8024): 419-428, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020166

RESUMEN

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformación Celular Neoplásica , Evolución Clonal , Células Clonales , Análisis de la Célula Individual , Factores de Necrosis Tumoral , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Evolución Clonal/genética , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Macrófagos/metabolismo , Mutación , Invasividad Neoplásica/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Factores de Necrosis Tumoral/genética , Factores de Necrosis Tumoral/metabolismo , Comunicación Autocrina , Análisis de Supervivencia
8.
Nature ; 632(8023): 201-208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020172

RESUMEN

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.


Asunto(s)
Competencia Celular , Células Clonales , Células Madre , Telomerasa , Animales , Masculino , Ratones , Diferenciación Celular , Linaje de la Célula , Cromatina/metabolismo , Cromatina/genética , Células Clonales/citología , Células Clonales/enzimología , Células Clonales/metabolismo , Eliminación de Gen , Genes myc , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Espermatogonias/citología , Espermatogonias/metabolismo , Células Madre/citología , Células Madre/enzimología , Células Madre/metabolismo , Telomerasa/deficiencia , Telomerasa/genética , Telomerasa/metabolismo , Transcripción Reversa , Biocatálisis , Homeostasis , Envejecimiento
9.
Nature ; 629(8011): 384-392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600385

RESUMEN

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Asunto(s)
Linaje de la Célula , Células Clonales , Mosaicismo , Neuronas , Prosencéfalo , Anciano , Femenino , Humanos , Alelos , Linaje de la Célula/genética , Células Clonales/citología , Células Clonales/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Hipocampo/citología , Proteínas de Homeodominio/metabolismo , Neocórtex/citología , Inhibición Neural , Neuronas/citología , Neuronas/metabolismo , Lóbulo Parietal/citología , Prosencéfalo/anatomía & histología , Prosencéfalo/citología , Prosencéfalo/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética
10.
J Virol ; 98(3): e0199523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323813

RESUMEN

Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE: As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales/citología , Células Clonales/inmunología , Regiones Determinantes de Complementariedad/inmunología , Vacunas contra la Influenza/inmunología , Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
11.
Nature ; 627(8003): 389-398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253266

RESUMEN

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonales/clasificación , Células Clonales/citología , Células Clonales/metabolismo , ADN Mitocondrial/genética , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Análisis de la Célula Individual , Transcripción Genética , Envejecimiento
12.
Nature ; 615(7950): 127-133, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813966

RESUMEN

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Proliferación Celular , Citocinas , Células Madre Hematopoyéticas , Humanos , Proliferación Celular/efectos de los fármacos , Células Clonales/citología , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Sangre Fetal/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Técnicas de Cultivo de Célula/métodos , Albúminas , Caprolactama , Polímeros , Receptores de Trombopoyetina , Trasplante Heterólogo , Análisis de Expresión Génica de una Sola Célula
13.
Nature ; 609(7929): 998-1004, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131022

RESUMEN

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Asunto(s)
Afinidad de Anticuerpos , Linfocitos B , Movimiento Celular , Células Clonales , Centro Germinal , Anticuerpos Anti-VIH , Inmunización , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/genética , Afinidad de Anticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales/citología , Células Clonales/inmunología , Epítopos de Linfocito B/inmunología , Perfilación de la Expresión Génica , Centro Germinal/citología , Centro Germinal/inmunología , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Inmunización Secundaria , Macaca mulatta/inmunología , Macaca mulatta/virología , Células B de Memoria/citología , Células B de Memoria/inmunología , Análisis de la Célula Individual , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Factores de Tiempo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
14.
Nature ; 606(7913): 343-350, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650442

RESUMEN

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Asunto(s)
Envejecimiento , Hematopoyesis Clonal , Células Clonales , Longevidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Niño , Preescolar , Hematopoyesis Clonal/genética , Células Clonales/citología , Femenino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/citología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Adulto Joven
15.
Nature ; 606(7913): 335-342, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650444

RESUMEN

Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.


Asunto(s)
Hematopoyesis Clonal , Células Clonales , Anciano , Envejecimiento , Hematopoyesis Clonal/genética , Células Clonales/citología , Genoma Humano , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Mutación , Filogenia
16.
Cell Mol Life Sci ; 79(3): 141, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35187598

RESUMEN

Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.


Asunto(s)
Linaje de la Célula , Rastreo Celular/métodos , Células Clonales/citología , Proteínas Luminiscentes/metabolismo , Organogénesis , Animales , Animales Modificados Genéticamente , Células Clonales/metabolismo , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Especificidad de Órganos
17.
Nature ; 602(7895): 148-155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875673

RESUMEN

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Asunto(s)
Antígenos Virales/inmunología , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , COVID-19/inmunología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , SARS-CoV-2/inmunología , Enfermedad Aguda , COVID-19/virología , Proliferación Celular , Células Clonales/citología , Células Clonales/inmunología , Humanos , Interferones/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Estudios Longitudinales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR7/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Tiempo , Transcriptoma
19.
Biomolecules ; 11(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34944475

RESUMEN

The BALB/c cell transformation assay (BALB-CTA) considers inter- and intra-tumor heterogeneities and affords the possibility of a direct comparison between untransformed and malignant cells. In the present study, we established monoclonal cell lines that originate from the BALB-CTA and mimic heterogeneous tumor cell populations, in order to investigate phenotype-specific effects of the anti-diabetic drug metformin and the short-chain fatty acid butyrate. Growth inhibitory effects were measured with a ViCell XR cell counter. The BALB/c tumor therapy model (BALB-TTM) was performed, and the extracellular glucose level was measured in the medium supernatant. Using a Seahorse Analyzer, the metabolic phenotypes of four selected clones were characterized, and effects on energy metabolism were investigated. Anti-carcinogenic effects and reduced glucose uptake after butyrate application were observed in the BALB-TTM. Metabolic characterization of the cell clones revealed three different phenotypes. Surprisingly, treatment with metformin or butyrate induced opposite metabolic shifts with similar patterns in all cell clones tested. In conclusion, the BALB-TTM is a relevant model for mechanistic cancer research, and the generation of monoclonal cell lines offers a novel possibility to investigate specific drug effects in a heterogeneous tumor cell population. The results indicate that induced alterations in energy metabolism seem to be independent of the original metabolic phenotype.


Asunto(s)
Butiratos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Metformina/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Células Clonales/citología , Células Clonales/efectos de los fármacos , Medios de Cultivo/química , Humanos , Ratones , Modelos Biológicos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA