Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Methods Mol Biol ; 2848: 135-150, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240521

RESUMEN

Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.


Asunto(s)
Vesículas Extracelulares , Regeneración , Retina , Animales , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/citología , Retina/fisiología , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Ratones , Comunicación Celular , Proliferación Celular , Regeneración Nerviosa/fisiología
2.
Methods Mol Biol ; 2848: 217-247, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240526

RESUMEN

Various strategies for replacing retinal neurons lost in degenerative diseases are under investigation, including stimulating the endogenous regenerative capacity of Müller Glia (MG) as injury-inducible retinal stem cells. Inherently regenerative species, such as zebrafish, have provided key insights into mechanisms regulating MG dedifferentiation to a stem-like state and the proliferation of MG and MG-derived progenitor cells (MGPCs). Interestingly, promoting MG/MGPC proliferation is not sufficient for regeneration, yet mechanistic studies are often focused on this measure. To fully account for the regenerative process, and facilitate screens for factors regulating cell regeneration, an assay for quantifying cell replacement is required. Accordingly, we adapted an automated reporter-assisted phenotypic screening platform to quantify the pace of cellular regeneration kinetics following selective cell ablation in larval zebrafish. Here, we detail a method for using this approach to identify chemicals and genes that control the rate of retinal cell regeneration following selective retinal cell ablation.


Asunto(s)
Pez Cebra , Animales , Retina/citología , Retina/metabolismo , Fenotipo , Proliferación Celular , Regeneración , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Células Madre/citología , Células Madre/metabolismo , Cinética , Regeneración Nerviosa/fisiología
3.
J Vis Exp ; (210)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39283141

RESUMEN

The primary supporting cell of the retina is the retinal glial Müller cell. They cover the entire retinal surface and are in close proximity to both the retinal blood vessels and the retinal neurons. Because of their growth, Müller cells perform several crucial tasks in a healthy retina, including the uptake and recycling of neurotransmitters, retinoic acid compounds, and ions (like potassium K+). In addition to regulating blood flow and maintaining the blood-retinal barrier, they also regulate the metabolism and the supply of nutrients to the retina. An established procedure for isolating primary mouse Müller cells is presented in this manuscript. To better understand the underlying molecular processes involved in the various mouse models of ocular disorders, Müller cell isolation is an excellent approach. This manuscript outlines a detailed procedure for Müller cell isolation from mice. From enucleation to seeding, the entire process lasts about a few hours. For 5-7 days after seeding, the media shouldn't be changed in order to allow the isolated cells to grow unhindered. Cell characterization using morphology and distinct immunofluorescent markers comes next in the process. Maximum passages for cells are 3-4 times.


Asunto(s)
Células Ependimogliales , Retina , Animales , Ratones , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Retina/citología , Técnicas Citológicas/métodos , Neuroglía/citología , Neuroglía/metabolismo
4.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39114968

RESUMEN

The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.


Asunto(s)
Encéfalo , Colesterol , Células Ependimogliales , Redes Reguladoras de Genes , Humanos , Colesterol/metabolismo , Encéfalo/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Evolución Biológica , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Regulación del Desarrollo de la Expresión Génica , Factor 6 Similar a Kruppel/metabolismo , Factor 6 Similar a Kruppel/genética
5.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38984586

RESUMEN

In the injured zebrafish retina, Müller glial cells (MG) reprogram to adopt retinal stem cell properties and regenerate damaged neurons. The strongest zebrafish reprogramming factors might be good candidates for stimulating a similar regenerative response by mammalian MG. Myc proteins are potent reprogramming factors that can stimulate cellular plasticity in differentiated cells; however, their role in MG reprogramming and retina regeneration remains poorly explored. Here, we report that retinal injury stimulates mycb and mych expression and that, although both Mycb and Mych stimulate MG reprogramming and proliferation, only Mych enhances retinal neuron apoptosis. RNA-sequencing analysis of wild-type, mychmut and mycbmut fish revealed that Mycb and Mych regulate ∼40% and ∼16%, respectively, of the genes contributing to the regeneration-associated transcriptome of MG. Of these genes, those that are induced are biased towards regulation of ribosome biogenesis, protein synthesis, DNA synthesis, and cell division, which are the top cellular processes affected by retinal injury, suggesting that Mycb and Mych are potent MG reprogramming factors. Consistent with this, forced expression of either of these proteins is sufficient to stimulate MG proliferation in the uninjured retina.


Asunto(s)
Proliferación Celular , Reprogramación Celular , Células Ependimogliales , Retina , Proteínas de Pez Cebra , Pez Cebra , Animales , Apoptosis/genética , Reprogramación Celular/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Retina/metabolismo , Retina/citología , Neuronas Retinianas/metabolismo , Transcriptoma/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
6.
J Biol Chem ; 300(8): 107570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39019216

RESUMEN

During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.


Asunto(s)
Encéfalo , Células Ependimogliales , Ratones Transgénicos , Proteínas Wnt , Vía de Señalización Wnt , Animales , Ratones , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Barrera Hematoencefálica/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas
7.
J Cell Sci ; 137(14)2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963001

RESUMEN

Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.


Asunto(s)
Dominios Proteicos , Retina , Semaforinas , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Semaforinas/metabolismo , Semaforinas/genética , Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Transducción de Señal , Células Ependimogliales/metabolismo , Células Ependimogliales/citología
8.
Bioessays ; 46(9): e2400133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990084

RESUMEN

The vertebrate retina is a tractable system for studying control of cell neurogenesis and cell fate specification. During embryonic development, retinal neurogenesis is under strict temporal regulation, with cell types generated in fixed but overlapping temporal intervals. The temporal sequence and relative numbers of retinal cell types generated during development are robust and show minimal experience-dependent variation. In many cold-blooded vertebrates, acute retinal injury induces a different form of neurogenesis, where Müller glia reprogram into retinal progenitor-like cells that selectively regenerate retinal neurons lost to injury. The extent to which the molecular mechanisms controlling developmental and injury-induced neurogenesis resemble one another has long been unclear. However, a recent study in zebrafish has shed new light on this question, using single-cell multiomic analysis to show that selective loss of different retinal cell types induces the formation of fate-restricted Müller glia-derived progenitors that differ both from one another and from progenitors in developing retina. Here, we discuss the broader implications of these findings, and their possible therapeutic relevance.


Asunto(s)
Neurogénesis , Retina , Pez Cebra , Animales , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Humanos , Regeneración/fisiología , Diferenciación Celular , Neuroglía/metabolismo , Neuroglía/fisiología
9.
Sci Rep ; 14(1): 15384, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965316

RESUMEN

Disruptions in energy homeostasis can lead to diseases like obesity and diabetes, affecting millions of people each year. Tanycytes, the adult stem cells in the hypothalamus, play crucial roles in assisting hypothalamic neurons in maintaining energy balance. Although tanycytes have been extensively studied in rodents, our understanding of human tanycytes remains limited. In this study, we utilized single-cell transcriptomics data to explore the heterogeneity of human embryonic tanycytes, investigate their gene regulatory networks, analyze their intercellular communication, and examine their developmental trajectory. Our analysis revealed the presence of two clusters of ß tanycytes and three clusters of α tanycytes in our dataset. Surprisingly, human embryonic tanycytes displayed significant similarities to mouse tanycytes in terms of marker gene expression and transcription factor activities. Trajectory analysis indicated that α tanycytes were the first to be generated, giving rise to ß tanycytes in a dorsal-ventral direction along the third ventricle. Furthermore, our CellChat analyses demonstrated that tanycytes generated earlier along the developmental lineages exhibited increased intercellular communication compared to those generated later. In summary, we have thoroughly characterized the heterogeneity of human embryonic tanycytes from various angles. We are confident that our findings will serve as a foundation for future research on human tanycytes.


Asunto(s)
Células Ependimogliales , Análisis de la Célula Individual , Transcriptoma , Humanos , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Redes Reguladoras de Genes , Ratones , Animales , Perfilación de la Expresión Génica , Comunicación Celular/genética , Hipotálamo/metabolismo , Hipotálamo/citología
10.
Sci Adv ; 10(29): eadp6039, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028813

RESUMEN

The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.


Asunto(s)
Diferenciación Celular , Hipocampo , Neurogénesis , Neuronas , Factores de Transcripción SOXC , Animales , Hipocampo/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Diferenciación Celular/genética , Neurogénesis/genética , Ratones , Transcripción Genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/citología
11.
Sci Adv ; 10(28): eadn2091, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996013

RESUMEN

Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for treating neurodegenerative diseases. In this study, we present an efficient method for reprogramming retinal glial cells into neurons. By suppressing Notch signaling by disrupting either Rbpj or Notch1/2, we induced mature Müller glial cells to reprogram into bipolar- and amacrine-like neurons. We demonstrate that Rbpj directly activates both Notch effector genes and genes specific to mature Müller glia while indirectly repressing expression of neurogenic basic helix-loop-helix (bHLH) factors. Combined loss of function of Rbpj and Nfia/b/x resulted in conversion of nearly all Müller glia to neurons. Last, inducing Müller glial proliferation by overexpression of dominant-active Yap promotes neurogenesis in both Rbpj- and Nfia/b/x/Rbpj-deficient Müller glia. These findings demonstrate that Notch signaling and NFI factors act in parallel to inhibit neurogenic competence in mammalian Müller glia and help clarify potential strategies for regenerative therapies aimed at treating retinal dystrophies.


Asunto(s)
Reprogramación Celular , Células Ependimogliales , Factores de Transcripción NFI , Neuroglía , Neuronas , Receptores Notch , Retina , Transducción de Señal , Animales , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Ratones , Retina/metabolismo , Retina/citología , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Neuroglía/metabolismo , Receptores Notch/metabolismo , Neuronas/metabolismo , Neuronas/citología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Neurogénesis , Proteínas Señalizadoras YAP/metabolismo , Proliferación Celular
12.
J Comp Neurol ; 532(6): e25630, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852043

RESUMEN

Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.


Asunto(s)
Ciclo Celular , Células Ependimogliales , Mitocondrias , Neocórtex , Humanos , Neocórtex/citología , Neocórtex/metabolismo , Mitocondrias/metabolismo , Ciclo Celular/fisiología , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología
13.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548890

RESUMEN

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Asunto(s)
Linaje de la Célula , Neocórtex , Células-Madre Neurales , Neurogénesis , Organoides , Humanos , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Organoides/citología , Organoides/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , División Celular , Proliferación Celular
15.
Biochem Biophys Res Commun ; 636(Pt 2): 79-86, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36368158

RESUMEN

During mammalian retinal development, the differentiation of multipotent progenitors depends on the coordinated action of a variety of intrinsic factors including non-coding RNAs (ncRNAs). To date, many small open reading frames have been identified in ncRNAs to encode micropeptides that function in diverse biological processes; however, it remains unclear whether they have a role in retinal development. Here we report that the 47-amino acid (AA) mitochondrial micropeptide Stmp1 encoded by the lncRNA 1810058I24Rik is involved in retinal differentiation. As the major protein product of 1810058I24Rik, Stmp1 promotes the differentiation of bipolar, amacrine and Müller cells as 1810058I24Rik does when overexpressed in neonatal murine retinas. Moreover, we have identified the 15-AA N-terminus of Stmp1 as its mitochondrion-targeting sequence as well as 5 conserved AA residues that affect protein stability and/or retinal cell differentiation. Together, our data reveal several novel characteristics of Stmp1 and uncover a role for Stmp1 in retinal cell differentiation perhaps through regulating mitochondrial function.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias , Proteínas Mitocondriales , Retina , Animales , Ratones , Células Ependimogliales/citología , Mitocondrias/metabolismo , Neuronas/citología , Retina/citología , ARN no Traducido/genética , Proteínas Mitocondriales/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología
16.
Science ; 377(6611): eabl6422, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074851

RESUMEN

Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.


Asunto(s)
Hombre de Neandertal , Neocórtex , Neurogénesis , Transcetolasa , Animales , Células Ependimogliales/citología , Hurones , Humanos , Ratones , Hombre de Neandertal/embriología , Hombre de Neandertal/genética , Neocórtex/embriología , Neurogénesis/genética , Neurogénesis/fisiología , Transcetolasa/genética , Transcetolasa/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(38): e2206147119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095192

RESUMEN

The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Células Ependimogliales , Microcefalia , Neocórtex , Animales , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/enzimología , Hurones , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Microcefalia/genética , Neocórtex/anomalías , Neocórtex/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Organoides/embriología
18.
Exp Eye Res ; 217: 108958, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35085579

RESUMEN

The purpose of this study was to investigate Müller cells during the fetal development of the human eye. Müller cells in eyes of 39 human fetuses (11-38 weeks of gestation, WOG) and 6 infants (5 died of abusive head trauma, AHT, aged 1-9 months) were immunohistochemically stained and investigated for spatial and temporal immunoreaction of nestin, CD44, collagen IX and GFAP, which are stem cell markers or markers of intermediate filaments, respectively, in one of the hitherto largest cohorts of fetal eyes. Müller cells could be detected immunohistochemically as early as 12 WOG by immunohistochemical staining with nestin. Nestin was more strongly expressed in Müller cells of the peripheral retina and a centroperipheral gradient of immunoreaction over time was observed. CD44 was predominantly expressed in fetal eyes of the late second and early third trimester between (23 and 27 WOG) and significantly stronger in the infant eyes. Collagen IX labeling in the central retina was significantly stronger than in more peripheral sectors and increased with fetal age. GFAP staining in Müller cells was seen in the eye of a fetus of 38 WOG who died postnatally and in the infant eyes with and without history of AHT. Additionally, GFAP staining was present in the astrocytes of fetal and infant eyes. All examined markers were expressed by Müller cells at different developmental stages highlighting the plasticity of Müller cells during the development of the human eye. GFAP should be cautiously used as a marker for AHT as it was also expressed in fetal astrocytes and Müller cells in eyes without history of AHT.


Asunto(s)
Colágeno Tipo IX , Células Ependimogliales , Proteína Ácida Fibrilar de la Glía , Receptores de Hialuranos , Nestina , Retina , Colágeno Tipo IX/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Feto , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Lactante , Nestina/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Retina/embriología , Retina/metabolismo
19.
J Neuroendocrinol ; 34(1): e13079, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34970803

RESUMEN

In addition to the hypophysiotropic thyrotropin-releasing hormone (TRH)-synthesizing neurons, a glial cell type, the tanycytes, also play a role in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Tanycytes modulate the feedback regulation of the axis by regulating the local thyroid hormone availability in the median eminence where the hypophysiotropic axons terminate. Recently, we showed that tanycytes produce diacylglycerol lipase alpha (DAGLα), the synthesizing enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG) that inhibits the release of TRH from the hypophysiotropic terminals in median eminence explants. To determine the importance of the endocannabinoid production of tanycytes, adult male Rax-CreERT2//DAGLαfl/fl mice were treated with tamoxifen to induce a tanycyte specific decrease of DAGLα expression (T-DAGLα KO). The effect of this genetic manipulation on the activity of the HPT axis was determined. Tanycyte specific decrease of DAGLα expression resulted in an approximately 2-fold increase of TSHß mRNA level that was accompanied by increased levels of circulating free T4. The TRH mRNA level was, however, not influenced by the genetic manipulation. In addition to the effects on the HPT axis, the T-DAGLα KO mice showed increased fat mass ratio and decreased blood glucose levels. These data indicate that when endocannabinoid release of tanycytes is decreased, the disinhibition of the TRH release induces increased TSH synthesis and higher circulating T4 levels. Thus it suggests that in wild-type mice, tanycytes exert a tonic inhibitory effect on the TRH release of hypophysiotropic axons. Furthermore, the endocannabinoid release of tanycytes also influences glucose homeostasis and fat deposition.


Asunto(s)
Células Ependimogliales/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Lipoproteína Lipasa/genética , Glándula Tiroides/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Animales , Endocannabinoides/farmacología , Células Ependimogliales/citología , Regulación Enzimológica de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes/métodos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Lipoproteína Lipasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/fisiología
20.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831460

RESUMEN

During embryonic development, progenitor cells are progressively restricted in their potential to generate different neural cells. A specific progenitor cell type, the radial glial cells, divides symmetrically and then asymmetrically to produce neurons, astrocytes, oligodendrocytes, and NG2-glia in the cerebral cortex. However, the potential of individual progenitors to form glial lineages remains poorly understood. To further investigate the cell progeny of single pallial GFAP-expressing progenitors, we used the in vivo genetic lineage-tracing method, the UbC-(GFAP-PB)-StarTrack. After targeting those progenitors in embryonic mice brains, we tracked their adult glial progeny in lower cortical layers. Clonal analyses revealed the presence of clones containing sibling cells of either a glial cell type (uniform clones) or two different glial cell types (mixed clones). Further, the clonal size and rostro-caudal cell dispersion of sibling cells differed depending on the cell type. We concluded that pallial E14 neural progenitors are a heterogeneous cell population with respect to which glial cell type they produce, as well as the clonal size of their cell progeny.


Asunto(s)
Corteza Cerebral/citología , Células Ependimogliales/citología , Neurogénesis , Envejecimiento/fisiología , Animales , Linaje de la Célula , Células Clonales , Femenino , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA