Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.644
Filtrar
1.
J Transl Med ; 22(1): 526, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822352

RESUMEN

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Asunto(s)
Antígenos CD34 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Neutrófilos/citología , Antígenos CD34/metabolismo , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Edición Génica , Degranulación de la Célula , Células Madre/metabolismo , Células Madre/citología , Citocinas/metabolismo , Fenotipo
2.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830768

RESUMEN

Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.


Asunto(s)
Linfocitos B , Proteínas Proto-Oncogénicas , Linfocitos T , Transactivadores , Transactivadores/metabolismo , Transactivadores/genética , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/citología , Ratones Endogámicos C57BL , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Diferenciación Celular/inmunología , Femenino , Feto/citología , Células Madre Fetales/metabolismo , Células Madre Fetales/citología
4.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824124

RESUMEN

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Inhibidor NF-kappaB alfa , Transducción de Señal , Tretinoina , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Tretinoina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Desarrollo Embrionario/genética , Ratones Noqueados , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Femenino
5.
Sci Adv ; 10(19): eadi6770, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718114

RESUMEN

Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.


Asunto(s)
Biomarcadores , Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas , Biomarcadores/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Rastreo Celular/métodos , Análisis de la Célula Individual/métodos , Microscopía Fluorescente/métodos , Humanos
7.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704588

RESUMEN

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antígenos CD34/metabolismo
8.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750578

RESUMEN

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Asunto(s)
Eritrocitos , Eritropoyesis , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo
9.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727270

RESUMEN

Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.


Asunto(s)
Daño del ADN , Reparación del ADN , Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Animales , Inestabilidad Genómica , Metabolismo Energético , Fosforilación Oxidativa
10.
Hematology ; 29(1): 2347673, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38712914

RESUMEN

The ability to perform hematopoietic cell transplant across major histocompatibility complex barriers can dramatically increase the availability of donors and allow more patients across the world to pursue curative transplant procedures for underlying hematologic disorders. Early attempts at haploidentical transplantation using broadly reactive T-cell depletion approaches were compromised by graft rejection, graft-versus-host disease and prolonged immune deficiency. The evolution of haploidentical transplantation focused on expanding transplanted hematopoietic progenitors as well as using less broadly reactive T-cell depletion. Significant outcome improvements were identified with technology advances allowing selective depletion of donor allospecific T cells, initially ex-vivo with evolution to its current in-vivo approach with the infusion of the highly immunosuppressive chemotherapy agent, cyclophosphamide after transplantation procedure. Current approaches are facile and portable, allowing expansion of allogeneic hematopoietic cell transplantation for patients across the world, including previously underserved populations.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante Haploidéntico , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante Haploidéntico/métodos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/etiología , Células Madre Hematopoyéticas/citología
11.
J Clin Apher ; 39(3): e22114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708583

RESUMEN

BACKGROUND: Stem cell apheresis in the context of autologous stem cell transplantation requires an accurate cluster of differentiantion 34 (CD34+) count determined by flow cytometry as the current gold standard. Since flow cytometry is a personnel and time-intensive diagnostic tool, automated stem cell enumeration may provide a promising alternative. Hence, this study aimed to compare automated hematopoietic progenitor enumeration carried out on a Sysmex XN-20 module compared with conventional flow cytometric measurements. METHODS: One hundred forty-three blood samples from 41 patients were included in this study. Correlation between the two methods was calculated over all samples, depending on leukocyte count and diagnosis. RESULTS: Overall, we found a high degree of correlation (r = 0.884). Furthermore, correlation was not impaired by elevated leukocyte counts (>10 000/µL, r = 0.860 vs <10 000/µL, r = 0.849; >20 000/µL, r = 0.843 vs <20 000/µL, r = 0.875). However, correlation was significantly impaired in patients with multiple myeloma (multiple myeloma r = 0.840 vs nonmyeloma r = 0.934). SUMMARY: Stem cell measurement carried out on the Sysmex XN-20 module provides a significant correlation with flow cytometry and might be implemented in clinical practice. In clinical decision-making, there was discrepancy of under 15% of cases. In multiple myeloma patients, XN-20 should be used with caution.


Asunto(s)
Antígenos CD34 , Citometría de Flujo , Células Madre Hematopoyéticas , Adulto , Femenino , Humanos , Masculino , Antígenos CD34/análisis , Antígenos CD34/sangre , Recuento de Células Sanguíneas/métodos , Recuento de Células Sanguíneas/instrumentación , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/citología , Recuento de Leucocitos/métodos , Mieloma Múltiple/sangre , Mieloma Múltiple/diagnóstico
12.
Cell Rep ; 43(5): 114227, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38735044

RESUMEN

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.


Asunto(s)
Cromatina , Células Madre Hematopoyéticas , Proteínas de Homeodominio , Proteínas Represoras , Humanos , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética
13.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802246

RESUMEN

A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.


Asunto(s)
Diferenciación Celular , Cromatina , Metabolismo Energético , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Cromatina/metabolismo , Cromatina/genética , Epigénesis Genética , Adaptación Fisiológica , Análisis de la Célula Individual/métodos
14.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773071

RESUMEN

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Epigénesis Genética , Células Madre Hematopoyéticas , Mutación , Proteínas Proto-Oncogénicas , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Humanos , Hematopoyesis/genética , Ratones , Diferenciación Celular/genética
15.
Stem Cell Res Ther ; 15(1): 145, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764093

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS: In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS: Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION: In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.


Asunto(s)
Células Madre Hematopoyéticas , Indenos , Células Madre Mesenquimatosas , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Indenos/farmacología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Furanos/farmacología , Sulfonas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Ratones Endogámicos C57BL , Sulfonamidas/farmacología , Fumar Cigarrillos/efectos adversos , Humanos , Inflamasomas/metabolismo
16.
Dev Cell ; 59(9): 1093-1095, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714156

RESUMEN

In this issue of Developmental Cell, Fowler et al. applied genetic lineage-tracing mouse models to support the notion that artery endothelial cells are the predominant source of hematopoietic stem cells. They leveraged this and developed a method capable of efficiently differentiating human pluripotent stem cells into HLF+HOXA+ hematopoietic progenitors.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Células Madre Pluripotentes , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ratones , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo
17.
Cell ; 187(11): 2817-2837.e31, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38701783

RESUMEN

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Asunto(s)
Células Asesinas Naturales , Proteínas de la Membrana , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos B/metabolismo , Linfocitos B/citología , Médula Ósea/metabolismo , Linaje de la Célula , Células Dendríticas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Células de Langerhans/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Monocitos/metabolismo , Piel/metabolismo , Ratones Endogámicos C57BL
18.
Elife ; 122024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809590

RESUMEN

Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.


In mammals and other animals with backbones, the cells that will make up blood and immune cells are generated during a very narrow timeframe in embryonic development. These cells, called hematopoietic stem cells and progenitors (or HSPCs for short), emerge from tissue known as hemogenic endothelium that makes up the floor of early blood vessels. For HPSCs to eventually specialise into different types of blood and immune cells, they require diverse migratory and homing properties that, ultimately, will determine the specific type of functions they exert. An important question for scientists studying the development of different blood and immune cell types is when this commitment to functional diversity is established. It could, for example, arise due to cells in the hemogenic endothelium having different origins. Alternatively, the signals that generate hemogenic endothelium cells could be responsible. It is also possible that both explanations are true, and that having different mechanisms involved ensures diversity in populations of HSPCs. To investigate differences between the HSPCs emerging from the hemogenic endothelium, Torcq et al. studied zebrafish embryos that had been modified so that one of the proteins involved in sensing cell polarity ­ where the top and bottom of the cell are located ­ was fluorescent. Live imaging of the embryos showed that two types of cells, with striking differences in morphology, emerge from the hemogenic tissue. In addition, one cell type displays the same polarity as the other vessel cells, whereas the other does not. Torcq et al. also present evidence suggesting that the signals responsible for controlling this cell polarity are provided by surrounding blood vessel cells, supporting the idea of an interplay between the different cell types. The finding that two different cell types emerge from the hemogenic endothelium, reveals a potential new source of diversity in HSPCs. Ultimately, this is expected to contribute to their functional complexity, resulting in both long-term stem cells that retain their full regenerative potential into adulthood and more specialized blood and immune cells.


Asunto(s)
Polaridad Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Hematopoyéticas , Proteínas de Pez Cebra , Pez Cebra , Pez Cebra/embriología , Animales , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemangioblastos/metabolismo , Hemangioblastos/citología , Hemangioblastos/fisiología , Embrión no Mamífero/metabolismo , Animales Modificados Genéticamente
19.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816617

RESUMEN

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Megacariocitos , Plaquetas/inmunología , Plaquetas/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular/inmunología , Megacariocitos/citología , Linaje de la Célula , Ratones Endogámicos C57BL , Hematopoyesis , Trombopoyesis , Ratones Noqueados , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 577-582, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660869

RESUMEN

OBJECTIVE: To explore the optimal storage condition and time of umbilical cord blood from collection to preparation. METHODS: Collect cord blood samples from 30 healthy newborns, with each new born's umbilical cord blood was divided into two parts on average. One part was stored in cold storage (4 ℃) and the other was stored at room temperature (20-24 ℃). Samples were taken at 24, 36, 48, 60 and 72 h, respectively, total nucleated cells (TNC) count and TNC viability was analyzed. Flow cytometry was used to detect the ratio of viable CD34+ cells to viable CD45+ cells and viability of CD34+ cells, and colony-forming unit-granulocyte-macrophage (CFU-GM) count was performed by hematopoietic progenitor cell colony culture. The change trend of each index over time was observed, and the differences in each index was compared between cold storage and room temperature storage under the same storage time. RESULTS: The TNC count (r 4 ℃=-0.9588, r 20-24 ℃=-0.9790), TNC viability (r 4 ℃=-0.9941, r 20-24 ℃=-0.9970), CD34+ cells viability (r 4 ℃=-0.9932, r 20-24 ℃=-0.9828) of cord blood stored in cold storage (4 ℃) and room temperature storage (20-24 ℃) showed a consistent downward trend with the prolongation of storage time. The percentage of viable CD34+ cells (r 4 ℃=0.9169, r 20-24 ℃=0.7470) and CFU-GM count (r 4 ℃=-0.2537, r 20-24 ℃=-0.8098) did not show consistent trends. When the storage time was the same, the TNC count, TNC viability, CD34+ cells viability and CFU-GM count of cord blood stored in cold storage were higher than those stored at room temperature. Under the same storage time (24, 36, 48, 60 or 72 h), TNC viability in room temperature storage was significantly lower than that in cold storage (P <0.001), but TNC count, percentage of viable CD34+ cells and CFU-GM count were not significantly different between room temperature storage and cold storage. When stored at room temperature for 24 h and 36 h, the viability of CD34+ cells was significantly lower than that in cold storage (P <0.001, P <0.01), when the storage time for 48, 60 and 72 h, there was no significant difference in the CD34+ cells viability between room temperature storage and cold storage. CONCLUSION: It is recommended that cord blood be stored in cold storage (4 ℃) from collection to preparation, and processed as soon as possible.


Asunto(s)
Antígenos CD34 , Conservación de la Sangre , Sangre Fetal , Humanos , Sangre Fetal/citología , Recién Nacido , Factores de Tiempo , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Supervivencia Celular , Temperatura , Recolección de Muestras de Sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA