Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
2.
Nat Cardiovasc Res ; 3(2): 145-165, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-39196193

RESUMEN

Preclinical data have confirmed that human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can remuscularize the injured or diseased heart, with several clinical trials now in planning or recruitment stages. However, because ventricular arrhythmias represent a complication following engraftment of intramyocardially injected PSC-CMs, it is necessary to provide treatment strategies to control or prevent engraftment arrhythmias (EAs). Here, we show in a porcine model of myocardial infarction and PSC-CM transplantation that EAs are mechanistically linked to cellular heterogeneity in the input PSC-CM and resultant graft. Specifically, we identify atrial and pacemaker-like cardiomyocytes as culprit arrhythmogenic subpopulations. Two unique surface marker signatures, signal regulatory protein α (SIRPA)+CD90-CD200+ and SIRPA+CD90-CD200-, identify arrhythmogenic and non-arrhythmogenic cardiomyocytes, respectively. Our data suggest that modifications to current PSC-CM-production and/or PSC-CM-selection protocols could potentially prevent EAs. We further show that pharmacologic and interventional anti-arrhythmic strategies can control and potentially abolish these arrhythmias.


Asunto(s)
Arritmias Cardíacas , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Animales , Arritmias Cardíacas/terapia , Humanos , Modelos Animales de Enfermedad , Infarto del Miocardio/terapia , Porcinos , Células Cultivadas , Diferenciación Celular , Células Madre Pluripotentes Inducidas/trasplante , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Fenotipo , Biomarcadores/metabolismo , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre/métodos , Antiarrítmicos/uso terapéutico , Antiarrítmicos/farmacología , Frecuencia Cardíaca/fisiología
3.
Nat Cardiovasc Res ; 3(5): 515-524, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39195938

RESUMEN

Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.


Asunto(s)
Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/trasplante , Miocitos Cardíacos/citología , Animales , Células Madre Pluripotentes/trasplante , Células Madre Pluripotentes/citología , Diferenciación Celular , Regeneración/fisiología , Trasplante de Células Madre/métodos , Cardiopatías/terapia
4.
Stem Cells ; 42(9): 781-790, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38902932

RESUMEN

The motor symptoms of Parkinson's disease (PD) are caused by the progressive loss of dopamine neurons from the substantia nigra. There are currently no treatments that can slow or reverse the neurodegeneration. To restore the lost neurons, international groups have initiated clinical trials using human embryonic or induced pluripotent stem cells (PSCs) to derive dopamine neuron precursors that are used as transplants to replace the lost neurons. Proof-of-principle experiments in the 1980s and 1990s showed that grafts of fetal ventral mesencephalon, which contains the precursors of the substantial nigra, could, under rare circumstances, reverse symptoms of the disease. Improvements in PSC technology and genomics have inspired researchers to design clinical trials using PSC-derived dopamine neuron precursors as cell replacement therapy for PD. We focus here on 4 such first-in-human clinical trials that have begun in the US, Europe, and Japan. We provide an overview of the sources of PSCs and the methods used to generate cells for transplantation. We discuss pros and cons of strategies for allogeneic, immune-matched, and autologous approaches and novel methods for overcoming rejection by the immune system. We consider challenges for safety and efficacy of the cells for durable engraftment, focusing on the genomics-based quality control methods to assure that the cells will not become cancerous. Finally, since clinical trials like these have never been undertaken before, we comment on the value of cooperation among rivals to contribute to advancements that will finally provide relief for the millions suffering from the symptoms of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/trasplante , Neuronas Dopaminérgicas/trasplante , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular
5.
Nat Commun ; 15(1): 3366, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684678

RESUMEN

Autologous skin grafting is a standard treatment for skin defects such as burns. No artificial skin substitutes are functionally equivalent to autologous skin grafts. The cultured epidermis lacks the dermis and does not engraft deep wounds. Although reconstituted skin, which consists of cultured epidermal cells on a synthetic dermal substitute, can engraft deep wounds, it requires the wound bed to be well-vascularized and lacks skin appendages. In this study, we successfully generate complete skin grafts with pluripotent stem cell-derived epidermis with appendages on p63 knockout embryos' dermis. Donor pluripotent stem cell-derived keratinocytes encroach the embryos' dermis by eliminating p63 knockout keratinocytes based on cell-extracellular matrix adhesion mediated cell competition. Although the chimeric skin contains allogenic dermis, it is engraftable as long as autologous grafts. Furthermore, we could generate semi-humanized skin segments by human keratinocytes injection into the amnionic cavity of p63 knockout mice embryos. Niche encroachment opens the possibility of human skin graft production in livestock animals.


Asunto(s)
Dermis , Queratinocitos , Ratones Noqueados , Trasplante de Piel , Animales , Trasplante de Piel/métodos , Queratinocitos/citología , Queratinocitos/trasplante , Humanos , Dermis/citología , Dermis/trasplante , Ratones , Epidermis/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/trasplante , Piel Artificial , Células Epidérmicas/trasplante , Células Epidérmicas/citología , Matriz Extracelular/metabolismo , Piel/citología
6.
Neurosci Bull ; 40(9): 1315-1332, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38466557

RESUMEN

Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors. The emerging human-animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease, elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels, and testing the efficacy of cell therapy interventions. Here, we discuss recent advances in the generation and applications of using human-animal chimeric brain models for the study of neurological disorders, including disease modeling and cell therapy.


Asunto(s)
Encéfalo , Tratamiento Basado en Trasplante de Células y Tejidos , Quimera , Enfermedades del Sistema Nervioso , Células Madre Pluripotentes , Humanos , Animales , Enfermedades del Sistema Nervioso/terapia , Células Madre Pluripotentes/trasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad
7.
Stem Cell Reports ; 19(2): 254-269, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38181785

RESUMEN

Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.


Asunto(s)
Células Madre Pluripotentes , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Animales , Ratas , Especies Reactivas de Oxígeno , Retina , Células Madre Pluripotentes/trasplante , Degeneración Retiniana/terapia , Retinitis Pigmentosa/terapia , Trasplante de Células Madre/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-36617642

RESUMEN

Retinal degeneration is an increasing global burden without cure for the majority of patients. Once retinal cells have degenerated, vision is permanently lost. Different strategies have been developed in recent years to prevent retinal degeneration or to restore sight (e.g., gene therapy, cell therapy, and electronic implants). Herein, we present current treatment strategies with a focus on cell therapy for photoreceptor replacement using human pluripotent stem cells. We will describe the state of the art and discuss obstacles and limitations observed in preclinical animal models as well as future directions to improve graft integration and functionality.


Asunto(s)
Células Madre Pluripotentes , Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Células Madre Pluripotentes/trasplante , Células Fotorreceptoras , Trasplante de Células Madre
9.
Diabet Med ; 39(12): e14992, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302085

RESUMEN

Islet transplantation from organ donors can considerably improve glucose homeostasis and well-being in individuals with type 1 diabetes, where the beta cells are destroyed by the autoimmune attack, but there are insufficient donor islets to make this a widespread therapy. Strategies are therefore being developed to generate unlimited amounts of insulin-producing beta cells from pluripotent stem cells, with the aim that they will be transplanted to treat diabetes. Whilst much progress has been made in recent years in the directed differentiation of pluripotent stem cells to beta-like cells, essential gaps still exist in generating stem cell-derived beta cells that are fully functional in vitro. This short review provides details of recent multi-'omics' studies of the human fetal pancreas, which are revealing granular information on the various cell types in the developing pancreas. It is anticipated that this fine mapping of the pancreatic cells at single-cell resolution will provide additional insights that can be utilised to reproducibly produce human beta cells in vitro that have the functional characteristics of beta cells within native human islets.


Asunto(s)
Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Páncreas/metabolismo , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Células Secretoras de Insulina/metabolismo
11.
Cells ; 10(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943842

RESUMEN

Spinal cord injury (SCI) is a devastating condition of the central nervous system that strongly reduces the patient's quality of life and has large financial costs for the healthcare system. Cell therapy has shown considerable therapeutic potential for SCI treatment in different animal models. Although many different cell types have been investigated with the goal of promoting repair and recovery from injury, stem cells appear to be the most promising. Here, we review the experimental approaches that have been carried out with pluripotent stem cells, a cell type that, due to its inherent plasticity, self-renewal, and differentiation potential, represents an attractive source for the development of new cell therapies for SCI. We will focus on several key observations that illustrate the potential of cell therapy for SCI, and we will attempt to draw some conclusions from the studies performed to date.


Asunto(s)
Células Madre Pluripotentes/trasplante , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Animales , Ensayos Clínicos como Asunto , Células Madre Embrionarias/trasplante , Humanos , Células Madre Pluripotentes Inducidas/trasplante
12.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34830410

RESUMEN

Human pluripotent stem cell-derived neural progenitor cells (NPCs) have the potential to recover from nerve injury. We previously reported that human placenta-derived mesenchymal stem cells (PSCs) have neuroprotective effects. To evaluate the potential benefit of NPCs, we compared them to PSCs using R28 cells under hypoxic conditions and a rat model of optic nerve injury. NPCs and PSCs (2 × 106 cells) were injected into the subtenon space. After 1, 2, and 4 weeks, we examined changes in target proteins in the retina and optic nerve. NPCs significantly induced vascular endothelial growth factor (Vegf) compared to age-matched shams and PSC groups at 2 weeks; they also induced neurofilaments in the retina compared to the sham group at 4 weeks. In addition, the expression of brain-derived neurotrophic factor (Bdnf) was high in the retina in the NPC group at 2 weeks, while expression in the optic nerve was high in both the NPC and PSC groups. The low expression of ionized calcium-binding adapter molecule 1 (Iba1) in the retina had recovered at 2 weeks after NPC injection and at 4 weeks after PSC injection. The expression of the inflammatory protein NLR family, pyrin domain containing 3 (Nlrp3) was significantly reduced at 1 week, and that of tumor necrosis factor-α (Tnf-α) in the optic nerves of the NPC group was lower at 2 weeks. Regarding retinal ganglion cells, the expressions of Brn3a and Tuj1 in the retina were enhanced in the NPC group compared to sham controls at 4 weeks. NPC injections increased Gap43 expression from 2 weeks and reduced Iba1 expression in the optic nerves during the recovery period. In addition, R28 cells exposed to hypoxic conditions showed increased cell survival when cocultured with NPCs compared to PSCs. Both Wnt/ß-catenin signaling and increased Nf-ĸb could contribute to the rescue of damaged retinal ganglion cells via upregulation of neuroprotective factors, microglial engagement, and anti-inflammatory regulation by NPCs. This study suggests that NPCs could be useful for the cellular treatment of various optic neuropathies, together with cell therapy using mesenchymal stem cells.


Asunto(s)
Células-Madre Neurales/trasplante , Enfermedades del Nervio Óptico/terapia , Traumatismos del Nervio Óptico/terapia , Nervio Óptico/crecimiento & desarrollo , Células Madre Pluripotentes/trasplante , Animales , Axones/metabolismo , Axones/fisiología , Supervivencia Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Femenino , Humanos , Regeneración Nerviosa/genética , Nervio Óptico/patología , Nervio Óptico/trasplante , Enfermedades del Nervio Óptico/patología , Embarazo , Ratas , Células Ganglionares de la Retina/trasplante
13.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831333

RESUMEN

Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Genómica , Células Madre Pluripotentes/trasplante , Inteligencia Artificial , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/citología , Sistema Cardiovascular/crecimiento & desarrollo , Diferenciación Celular , Descubrimiento de Drogas , Edición Génica , Humanos , Modelos Biológicos , Células Madre Pluripotentes/citología , Medicina de Precisión , Medicina Regenerativa , Seguridad , Investigación Biomédica Traslacional
14.
Stem Cell Reports ; 16(10): 2473-2487, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506727

RESUMEN

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.


Asunto(s)
Amiodarona/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Ivabradina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/efectos adversos , Taquicardia/tratamiento farmacológico , Animales , Antiarrítmicos/uso terapéutico , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Humanos , Masculino , Células Madre Pluripotentes/trasplante , Porcinos
15.
In Vitro Cell Dev Biol Anim ; 57(6): 587-597, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34212340

RESUMEN

Conventional methods for obtaining pancreatic ß cells are based on simulating the embryonic development phase of endocrine cells via hierarchical differentiation of pluripotent stem cells (PSCs). Accordingly, we attempted to modify the protocols for obtaining insulin-secreting cells (ISCs) by sequential differentiation of a human embryonic stem cell (hESC), using the HS181 cell line. Furthermore, we hypothesize that actual pancreatic endocrine cells may arise from trans-differentiation of mature ductal cells after the embryonic developmental stage and throughout the rest of life. According to the hypothesis, ductal cells are trans-differentiated into endocrine and exocrine cells, undergoing a partial epithelial to mesenchymal transition (EMT). To address this issue, we developed two new protocols based on hESC differentiation to obtain ductal cells and then induce EMT in cells to obtain hormone-secreting islet-like cells (HSCs). The ductal (pre-EMT exocrine) cells were then induced to undergo partial EMT by treating with Wnt3a and activin A, in hypoxia. The cell derived from the latter method significantly expressed the main endocrine cell-specific markers and also ß cells, in particular. These experiments not only support our hypothetical model but also offer a promising approach to develop new methods to compensate ß cell depletion in patients with type 1 diabetes mellitus (T1DM). Although this protocol of generating islet-like cells from ductal cells has a potential to treat T1DM, this strategy may be exploited to optimize the function of these cells in an animal model and future clinical applications.


Asunto(s)
Transdiferenciación Celular/genética , Diabetes Mellitus Tipo 1/terapia , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes/citología , Proteína Wnt3A/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Células Endocrinas/citología , Transición Epitelial-Mesenquimal/genética , Células Madre Embrionarias Humanas/trasplante , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/trasplante , Páncreas/crecimiento & desarrollo , Páncreas/patología , Células Madre Pluripotentes/trasplante
16.
Science ; 373(6554): 516-522, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34326233

RESUMEN

Technological advancements in blood glucose monitoring and therapeutic insulin administration have improved the quality of life for people with type 1 diabetes. However, these efforts fall short of replicating the exquisite metabolic control provided by native islets. We examine the integrated advancements in islet cell replacement and immunomodulatory therapies that are coalescing to enable the restoration of endogenous glucose regulation. We highlight advances in stem cell biology and graft site design, which offer innovative sources of cellular material and improved engraftment. We also cover cutting-edge approaches for preventing allograft rejection and recurrent autoimmunity. These insights reflect a growing understanding of type 1 diabetes etiology, ß cell biology, and biomaterial design, together highlighting therapeutic opportunities to durably replace the ß cells destroyed in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Inmunomodulación , Células Secretoras de Insulina/trasplante , Trasplante de Islotes Pancreáticos , Animales , Autoinmunidad , Glucemia/metabolismo , Diferenciación Celular , Ingeniería Celular , Microambiente Celular , Diabetes Mellitus Tipo 1/metabolismo , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Tolerancia Inmunológica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre
17.
Cell ; 184(8): 2020-2032.e14, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33861963

RESUMEN

Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.


Asunto(s)
Quimerismo , Embrión de Mamíferos/citología , Células Madre Pluripotentes/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Macaca fascicularis , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , RNA-Seq , Análisis de la Célula Individual , Transcriptoma
18.
Sci Rep ; 11(1): 7177, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785778

RESUMEN

Cellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 µm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic ß-cells in suspension culture was also demonstrated.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/fisiología , Esferoides Celulares/fisiología , Reactores Biológicos , Cápsulas/química , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Línea Celular , Supervivencia Celular , Trasplante de Células/métodos , Diabetes Mellitus/terapia , Enfermedad Hepática en Estado Terminal/terapia , Humanos , Hidrogeles/química , Células Secretoras de Insulina/fisiología , Técnicas Analíticas Microfluídicas/instrumentación , Células Madre Pluripotentes/trasplante , Polietilenglicoles/química
19.
Cell Rep ; 34(12): 108889, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761348

RESUMEN

Spinal cord injury (SCI) often results in spasticity. There is currently no effective therapy for spasticity. Here, we describe a method to efficiently differentiate human pluripotent stem cells from spinal GABA neurons. After transplantation into the injured rat spinal cord, the DREADD (designer receptors exclusively activated by designer drug)-expressing spinal progenitors differentiate into GABA neurons, mitigating spasticity-like response of the rat hindlimbs and locomotion deficits in 3 months. Administering clozapine-N-oxide, which activates the grafted GABA neurons, further alleviates spasticity-like response, suggesting an integration of grafted GABA neurons into the local neural circuit. These results highlight the therapeutic potential of the spinal GABA neurons for SCI.


Asunto(s)
Neuronas GABAérgicas/patología , Espasticidad Muscular/patología , Espasticidad Muscular/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/patología , Potenciales de Acción/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Humanos , Locomoción , Vértebras Lumbares/patología , Vértebras Lumbares/fisiopatología , Masculino , Neuronas Motoras/patología , Neuronas Motoras/ultraestructura , Espasticidad Muscular/complicaciones , Inhibición Neural , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Sinapsis/metabolismo , Sinapsis/ultraestructura
20.
Stem Cells ; 39(7): 882-896, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33657251

RESUMEN

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Asunto(s)
Células Madre Pluripotentes , Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana , Trasplante de Células Madre , Animales , Ratones , Células Madre Pluripotentes/trasplante , Degeneración Retiniana/terapia , Células Ganglionares de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA