Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.099
Filtrar
1.
Biomaterials ; 313: 122804, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39236631

RESUMEN

Insulin resistance and pancreatic ß-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet ß-cell and enhanced pancreatic ß-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Células Secretoras de Insulina , Nanopartículas , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas/química , Ratones , Masculino , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones Endogámicos C57BL , Zingiber officinale/química , Dióxido de Silicio/química , Exosomas/metabolismo , Biomimética/métodos , Estrés Oxidativo/efectos de los fármacos
2.
Stem Cell Res Ther ; 15(1): 374, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39443977

RESUMEN

BACKGROUND: Islet transplantation is a recommended treatment for type 1 diabetes but is limited by donor organ shortage. This study introduces an innovative approach for improving the differentiation and functionality of insulin-producing cells (IPCs) from iPSCs using 3D spheroid formation and hydrogel matrix as an alternative pancreatic islet source. The extracellular matrix (ECM) is crucial for pancreatic islet functionality, but finding the ideal matrix for ß-cell differentiation has been challenging. We aimed to advance IPC differentiation and maturation through an esterified collagen hydrogel, comparing its effectiveness with conventional basement membrane extract (BME) hydrogels. METHODS: iPSCs were differentiated into IPCs using a small molecule-based sequential protocol, followed by spheroid formation in concave microwells. Rheological analysis, scanning electron microscopy, and proteomic profiling were used to characterize the chemical and physical properties of each matrix. IPCs, both in single-cell form and as spheroids, were embedded in either ionized collagen or BME hydrogels, which was followed by assessments of morphological changes, pancreatic islet-related gene expression, insulin secretion, and pathway activation using comprehensive analytical techniques. RESULTS: Esterified collagen hydrogels markedly improved the structural integrity, insulin expression, and cell-cell interactions in IPC spheroids, forming densely packed insulin-expressing clusters, in contrast to the dispersed cells observed in BME cultures. Collagen hydrogel significantly enhanced the mRNA expression of crucial endocrine markers and maturation factors, with IPC spheroids showing accelerated differentiation from day 5, suggesting a faster differentiation compared to single cells in hydrogel encapsulation. Insulin secretion in response to glucose in collagen environments, with a GSIS index of 2.46 ± 0.05, exceeded those in 2D and BME, demonstrating superior pancreatic islet functionality. Pathway analysis highlighted enhanced insulin secretion capabilities, evidenced by the upregulation of genes like Secretogranin III and Chromogranin A in collagen cultures. In vivo transplantation results showed that collagen hydrogel enhanced cluster integrity, tissue integration, and insulin secretion compared to non-embedded IPCs and BME groups. CONCLUSION: Esterified collagen hydrogels demonstrated superior efficacy over 2D and BME in promoting IPC differentiation and maturation, possibly through upregulation of the expression of key secretion pathway genes. Our findings suggest that using collagen hydrogels presents a promising approach to enhance insulin secretion efficiency in differentiating pancreatic ß-cells, advancing cell therapy in diabetes cell therapy.


Asunto(s)
Diferenciación Celular , Colágeno , Hidrogeles , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Diferenciación Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Animales , Colágeno/química , Colágeno/metabolismo , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Insulina/metabolismo , Ratones
3.
J Nanobiotechnology ; 22(1): 657, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39456025

RESUMEN

The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet ß-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic ß cells (ß-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6 N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.


Asunto(s)
Resinas Acrílicas , Diabetes Mellitus Experimental , Grafito , Insulina , Ratones Endogámicos C57BL , Esferoides Celulares , Andamios del Tejido , Animales , Ratones , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Insulina/metabolismo , Andamios del Tejido/química , Grafito/química , Grafito/farmacología , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Diabetes Mellitus Tipo 1/terapia , Porosidad , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos/métodos , Temperatura , Masculino , Glucosa/metabolismo
4.
Recent Adv Drug Deliv Formul ; 18(4): 304-314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39356101

RESUMEN

BACKGROUND: Autophagy plays a crucial role in modulating the proliferation of cancer diseases. However, the application of Naringenin (Nar), a compound with potential benefits against these diseases, has been limited due to its poor solubility and bioavailability. OBJECTIVE: This study aimed to develop solid lipid nanoparticles (Nar-SLNs) loaded with Nar to enhance their therapeutic impact. METHODS: In vitro experiments using Rin-5F cells exposed to Nar and Nar-SLNs were carried out to investigate the protective effects of Nar and its nanoformulation against the pancreatic cancer cell line of Rin-5F. RESULTS: Treatment with Nar and Nar-SLN led to an increase in autophagic markers (Akt, LC3, Beclin1, and ATG genes) and a decrease in the level of miR-21. Both Nar and Nar-SLN treatments inhibited cell proliferation and reduced the expression of autophagic markers. Notably, Nar-SLNs exhibited greater efficacy compared to free Nar. CONCLUSION: These findings suggest that SLNs effectively enhance the cytotoxic impact of Nar, making Nar-SLNs a promising candidate for suppressing or preventing Rin-5F cell growth.


Asunto(s)
Autofagia , Proliferación Celular , Flavanonas , Nanopartículas , Flavanonas/farmacología , Flavanonas/administración & dosificación , Flavanonas/química , Autofagia/efectos de los fármacos , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Animales , Ratas , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lípidos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Humanos , Portadores de Fármacos/química , Liposomas
5.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39408721

RESUMEN

Pro-inflammatory cytokines play a role in the failure of ß cells in type 1 and type 2 diabetes. While existing data from 'omics' experiments allow for some understanding of the molecular mechanisms behind cytokine-induced dysfunction in ß cells, no report thus far has provided information on the direct imaging of the ß cell landscape with nanoscale resolution following cytokine exposure. In this study, we use Airyscan-based optical super-resolution microscopy of Insulinoma 1E (INS-1E) cells to investigate the structural properties of two subcellular membranous compartments involved in the production, maturation and secretion of insulin-containing granules, the endoplasmic reticulum (ER) and the Golgi apparatus (GA). Our findings reveal that exposure of INS-1E cells to IL-1ß and IFN-γ for 24 h leads to significant structural alterations of both compartments. In more detail, both the ER and the GA fragment and give rise to vesicle-like structures with markedly reduced characteristic area and perimeter and increased circularity with respect to the original structures. These findings complement the molecular data collected thus far on these compartments and their role in ß cell dysfunction and lay the groundwork for future optical microscopy-based ex vivo and in vivo investigations.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Células Secretoras de Insulina , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/efectos de los fármacos , Animales , Ratas , Citocinas/metabolismo , Línea Celular Tumoral , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Interferón gamma/farmacología , Interferón gamma/metabolismo
6.
Front Endocrinol (Lausanne) ; 15: 1476444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39429740

RESUMEN

Diabetes treatment options have improved dramatically over the last 100 years, however, close to 2 million individuals in the U.S. alone live with type 1 diabetes (T1D) and are still dependent on multiple daily insulin injections and/or continuous insulin infusion with a pump to stay alive and no oral medications are available. After decades of focusing on immunosuppressive/immunomodulatory approaches for T1D, it has now become apparent that at least after disease onset, this by itself may not be sufficient, and in order to be effective, therapies need to also address beta cell health. This Perspective article discusses the emergence of such a beta cell-targeting, novel class of oral T1D drugs targeting thioredoxin-interacting protein (TXNIP) and some very recent advances in this field that start to address this unmet medical need. It thereby focuses on repurposing of the antihypertensive drug, verapamil found to non-specifically inhibit TXNIP and on TIX100, a new chemical entity specifically developed as an oral anti-diabetic drug to inhibit TXNIP. Both have shown striking anti-diabetic effects in preclinical studies. Verapamil has also proven to be beneficial in adults and children with recent onset T1D, while TIX100 has just been cleared by the U.S. Food and Drug Administration (FDA) to proceed to clinical trials. Taken together, we propose that such non-immunosuppressive, adjunctive therapies to insulin, alone or in combination with immune modulatory approaches, are critical in order to achieve effective and durable disease-modifying treatments for T1D.


Asunto(s)
Proteínas Portadoras , Diabetes Mellitus Tipo 1 , Hipoglucemiantes , Células Secretoras de Insulina , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Administración Oral , Animales , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/metabolismo
7.
Nutr J ; 23(1): 119, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354480

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic condition characterized by insulin resistance and impaired insulin production, leading to elevated blood glucose levels. Curcumin, a polyphenolic compound from Curcuma longa, has shown potential in improving insulin sensitivity and reducing blood glucose levels, which may help mitigate type 2 diabetes progression. OBJECTIVE: To assess the efficacy of improving type 2 diabetes (T2DM). STUDY DESIGN: This randomized, double-blind, placebo-controlled trial included subjects (n = 272) with criteria for type 2 diabetes. METHODS: All subjects were randomly assigned to receive curcumin (1500 mg/day) or placebo with blind labels for 12 months. To assess the improvement of T2DM after curcumin treatments body weight and body mass index, fasting plasma glucose, glycosylated hemoglobin A1c, ß-cell function (homeostasis model assessment [HOMA-ß]), insulin resistance (HOMA-IR), insulin, adiponectin, and leptin were monitored at the baseline and at 3-, 6-, 9-, and 12-month visits during the course of intervention. RESULTS: After 12 months of treatment, the curcumin-treated group showed a significant decrease in fasting blood glucose (115.49 vs.130.71; P < 0.05), HbA1c (6.12 vs. 6.47; P < 0.05). In addition, the curcumin-treated group showed a better overall function of ß-cells, with higher HOMA-ß (136.20 vs. 105.19; P < 0.01) The curcumin-treated group showed a lower level of HOMA-IR (4.86 vs. 6.04; P < 0.001) and higher adiponectin (14.51 vs. 10.36; P < 0.001) when compared to the placebo group. The curcumin-treated group also showed a lower level of leptin (9.42 vs. 20.66; P < 0.001). Additionally, body mass index was lowered (25.9 4 vs.29.34), with a P value of 0.001. CONCLUSIONS: A 12-month curcumin intervention in type 2 diabetes patients shows a significant glucose-lowering effect. Curcumin treatment appeared to improve the overall function of ß-cells and reduce both insulin resistance and body weight, with very minor adverse effects. Curcumin intervention in obese patients with type 2 diabetes may be beneficial. TRIAL REGISTRATION: Thai clinical trials regentrify no.20140303003.


Asunto(s)
Glucemia , Índice de Masa Corporal , Curcumina , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Resistencia a la Insulina , Células Secretoras de Insulina , Insulina , Obesidad , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Curcumina/farmacología , Curcumina/administración & dosificación , Masculino , Femenino , Método Doble Ciego , Persona de Mediana Edad , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Insulina/sangre , Adiponectina/sangre , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Leptina/sangre , Adulto , Curcuma , Peso Corporal/efectos de los fármacos
8.
Front Immunol ; 15: 1470677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411715

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing ß-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate ß-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived ß-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving ß-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-α) inhibitors have demonstrated efficacy at preserving ß-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-α inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-α inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-α inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-α inhibitors in T1D and considerations for strategies collectively identified to advance TNF-α inhibitors beyond phase 2 clinical studies for stage 3 T1D.


Asunto(s)
Ensayos Clínicos como Asunto , Diabetes Mellitus Tipo 1 , Factor de Necrosis Tumoral alfa , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/inmunología , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hipoglucemiantes/uso terapéutico , Animales
9.
J Med Virol ; 96(10): e70009, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39422382

RESUMEN

Macrophages are suspected to be involved in the pathogenesis of type 1 diabetes. The role of macrophages in the transmission of coxsackievirus B4 (CVB4) to pancreatic cells and in the alteration of these cells was investigated. Human monocytes isolated from peripheral blood were differentiated into macrophages with M-CSF (M-CSF macrophages) or GM-CSF (GM-CSF macrophages). M-CSF macrophages were inoculated with CVB4. M-CSF and GM-CSF macrophages were activated with lipopolysaccharide and interferon (IFN)-γ. Human pancreatic beta cells 1.1B4 were inoculated with CVB4 derived from M-CSF macrophages or were cocultured with CVB4-infected M-CSF macrophages. The antiviral activity of synthetic molecules in macrophage cultures was evaluated. Activated macrophages were cocultured with CVB4-persistently infected 1.1B4 cells, and the specific lysis of these cells was determined. Our study shows that CVB4 can infect M-CSF macrophages, leading to the release of interleukin-6 and tumor necrosis factor-α and later IFN-α. M-CSF macrophage-derived CVB4 can infect 1.1B4 cells, which were then altered; however, when these cells were cultured in medium containing agarose, cell layers were not altered. Fluoxetine and CUR-N373 can inhibit CVB4 replication in macrophage cultures. Supernatants of activated M-CSF and GM-CSF macrophage cultures induced lysis of CVB4-persistently infected 1.1B4 cells. The cytolytic activity of activated GM-CSF macrophages was higher towards CVB4-persistently infected 1.1B4 cells than mock-infected 1.1B4 cells. In conclusion, macrophages may play a role in CVB4 infection of pancreatic cells, and are capable of inducing lysis of infected pancreatic cells.


Asunto(s)
Enterovirus Humano B , Macrófagos , Humanos , Macrófagos/virología , Enterovirus Humano B/fisiología , Enterovirus Humano B/efectos de los fármacos , Células Secretoras de Insulina/virología , Células Secretoras de Insulina/efectos de los fármacos , Infecciones por Coxsackievirus/virología , Línea Celular , Técnicas de Cocultivo , Células Cultivadas , Citocinas/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología
10.
Nat Commun ; 15(1): 8754, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384787

RESUMEN

Human pluripotent stem cells (hPSCs) have the potential to differentiate into various cell types, including pancreatic insulin-producing ß cells, which are crucial for developing therapies for diabetes. However, current methods for directing hPSC differentiation towards pancreatic ß-like cells are often inefficient and produce cells that do not fully resemble the native counterparts. Here, we report that highly selective tankyrase inhibitors, such as WIKI4, significantly enhances pancreatic differentiation from hPSCs. Our results show that WIKI4 promotes the formation of pancreatic progenitors that give rise to islet-like cells with improved ß-like cell frequencies and glucose responsiveness compared to our standard cultures. These findings not only advance our understanding of pancreatic development, but also provide a promising new tool for generating pancreatic cells for research and potential therapeutic applications.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina , Células Madre Pluripotentes , Tanquirasas , Humanos , Tanquirasas/antagonistas & inhibidores , Tanquirasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Páncreas/citología , Páncreas/metabolismo , Glucosa/metabolismo , Inhibidores Enzimáticos/farmacología
11.
Front Immunol ; 15: 1470881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399499

RESUMEN

The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Supervivencia de Injerto , Trasplante de Islotes Pancreáticos , Receptores Citoplasmáticos y Nucleares , Trasplante Heterólogo , Animales , Humanos , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/terapia , Ratones , Supervivencia de Injerto/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Masculino , Glucemia/metabolismo , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos
12.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39408861

RESUMEN

As the sole producers of insulin under physiological conditions, the normal functioning of pancreatic ß cells is crucial for maintaining glucose homeostasis in the body. Due to the high oxygen and energy demands required for insulin secretion, hypoxia has been shown to play a critical role in pancreatic ß-cell dysfunction. Lipid metabolism abnormalities, a common metabolic feature in type 2 diabetic patients, are often accompanied by tissue hypoxia caused by metabolic overload and lead to increased free fatty acid (FFA) levels. However, the specific mechanisms underlying FFA-induced ß-cell dysfunction remain unclear. Nicotinamide mononucleotide (NMN), a naturally occurring bioactive nucleotide, has garnered significant attention in recent years for its effectiveness in replenishing NAD+ and alleviating various diseases. Nevertheless, studies exploring the mechanisms through which NMN influences ß-cell dysfunction remain scarce. In this study, we established an in vitro ß-cell dysfunction model by treating INS-1 cells with palmitate (PA), including control, PA-treated, and PA combined with NMN or activator/inhibitor groups. Compared to the control group, cells treated with PA alone showed significantly reduced insulin secretion capacity and decreased expression of proteins related to the NAD+/AMPK/SIRT1/HIF-1α pathway. In contrast, NMN supplementation significantly restored the expression of pathway-related proteins by activating NAD+ and effectively improved insulin secretion. Results obtained using HIF-1α and AMPK inhibitors/activators further supported these findings. In conclusion, our study demonstrates that NMN reversed the PA-induced downregulation of the NAD+/AMPK/SIRT1/HIF-1α pathway, thereby alleviating ß-cell dysfunction. Our study investigated the mechanisms underlying PA-induced ß-cell dysfunction, examined how NMN mitigates this dysfunction and offered new insights into the therapeutic potential of NMN for treating ß-cell dysfunction and T2DM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Grasos no Esterificados , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células Secretoras de Insulina , NAD , Mononucleótido de Nicotinamida , Transducción de Señal , Sirtuina 1 , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/metabolismo , Sirtuina 1/metabolismo , Animales , Ácidos Grasos no Esterificados/metabolismo , NAD/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Insulina/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos
13.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275180

RESUMEN

Dysfunction or loss of pancreatic ß cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic ß cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in ß cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic ß cells and emphasizing the importance of investigating the role of NMDA in ß cell dysfunction.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Células Secretoras de Insulina , Receptores X del Hígado , Sistema de Señalización de MAP Quinasas , N-Metilaspartato , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , N-Metilaspartato/farmacología , Ratas , Receptores X del Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Colesterol/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Masculino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Línea Celular
14.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273299

RESUMEN

GLP-1 receptor agonists, which were initially intended to treat type 2 diabetes patients, have demonstrated promise as an adjuvant therapy for type 1 diabetes (T1D). These medications can manage T1D by improving ß-cell function, reducing glucose fluctuation, and providing cardioprotective effects. Recent research suggests that boosting cell proliferation and lowering apoptosis can help maintain the bulk of ß-cells. Furthermore, GLP-1 receptor agonists have potent anti-inflammatory characteristics, improving immunological control and lowering systemic inflammation, both of which are critical for reducing autoimmune damage in T1D. Beyond glucose control, these agonists have neuroprotective qualities and aid in weight management. Combining these medications with insulin could significantly change how T1D is managed. The clinical data and biological mechanisms discussed in this review support the potential use of GLP-1 receptor agonists in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulina/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón
15.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273600

RESUMEN

Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic ß-like cells (PßLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic ß cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PßLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic ß cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific ß cell genes.


Asunto(s)
Ácido Ascórbico , Diferenciación Celular , Diabetes Mellitus , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Tretinoina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/citología , Ácido Ascórbico/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Tretinoina/farmacología , Diferenciación Celular/efectos de los fármacos , Humanos , Diabetes Mellitus/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transactivadores/metabolismo , Transactivadores/genética , Insulina/metabolismo , Proteínas del Tejido Nervioso
16.
Cell Physiol Biochem ; 58(5): 527-537, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39348523

RESUMEN

BACKGROUND/AIMS: There are evidences that a decrease in the functional activity of pancreatic ß-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment. METHODS: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic ß-cells with streptozotocin-induced senescence by measuring markers, associated with senescence. RESULTS: Exposure to streptozotocin (STZ) resulted in the senescence of the ß-cells. The addition of PRDX6 to the culture medium of RIN-m5F ß-cells before treatment with STZ decreased the levels of the following senescence markers: the percentage of SA-ß-Gal-positive cells, the phosphorylation of histone H2AX and p21 proteins, and the secretion of the proinflammatory cytokine IL-6 but not the anti-inflammatory cytokine IL-10. These effects were accompanied by a decrease in the production of reactive oxygen species (ROS) and the restoration of impaired NF-κB activation. In addition, PRDX6 altered the production of the heat shock protein HSP90: the production of the constitutive form of HSP90-beta decreased, while the level of inducible HSP90-alpha increased. CONCLUSION: PRDX6 prevented the senescence of RIN-m5F cells in response to the DNA damage-inducing agent streptozotocin, indicating a potential protective role of PRDX6 in type 2 diabetes mellitus.


Asunto(s)
Senescencia Celular , Proteínas HSP90 de Choque Térmico , Células Secretoras de Insulina , Interleucina-6 , Peroxiredoxina VI , Especies Reactivas de Oxígeno , Estreptozocina , Animales , Estreptozocina/toxicidad , Ratas , Senescencia Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Especies Reactivas de Oxígeno/metabolismo , Peroxiredoxina VI/metabolismo , Interleucina-6/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , FN-kappa B/metabolismo , Línea Celular , Interleucina-10/metabolismo , Histonas/metabolismo
17.
Nutrients ; 16(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339785

RESUMEN

Numerous studies have established associations between vitamin D and diabetes. The vitamin D receptor is widely distributed throughout the human body, including in pancreatic beta cells (ß-cells), hepatocytes, and immune cells. Therefore, vitamin D's effect on the risk, progression, or complications of diabetes may be mediated through various mechanisms. These include the regulation of insulin secretion or sensitivity and modulation of ß-cell function and its immunomodulatory and anti-inflammatory effects. This review extensively explores the relationship between vitamin D status and diabetes, as well as the preventive or therapeutic effects of vitamin D supplementation on diabetes from human studies. Additionally, it examines in detail the impact of vitamin D on immune and inflammatory responses in the diabetic milieux and ß-cell function to better understand the underlying mechanisms through which vitamin D influences diabetes.


Asunto(s)
Células Secretoras de Insulina , Vitamina D , Humanos , Vitamina D/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Suplementos Dietéticos , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/inmunología , Receptores de Calcitriol/metabolismo , Diabetes Mellitus , Secreción de Insulina/efectos de los fármacos , Diabetes Mellitus Tipo 2 , Inmunomodulación , Animales
18.
Biofabrication ; 16(4)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39255833

RESUMEN

The transplantation of islet beta cells offers an alternative to heterotopic islet transplantation for treating type 1 diabetes mellitus (T1DM). However, the use of systemic immunosuppressive drugs in islet transplantation poses significant risks to the body. To address this issue, we constructed an encapsulated hybrid scaffold loaded with islet beta cells. This article focuses on the preparation of the encapsulated structure using 3D printing, which incorporates porcine pancreas decellularized extracellular matrix (dECM) to the core scaffold. The improved decellularization method successfully preserved a substantial proportion of protein (such as Collagen I and Laminins) architecture and glycosaminoglycans in the dECM hydrogel, while effectively removing most of the DNA. The inclusion of dECM enhanced the physical and chemical properties of the scaffold, resulting in a porosity of 83.62% ± 1.09% and a tensile stress of 1.85 ± 0.16 MPa. In teams of biological activity, dECM demonstrated enhanced proliferation, differentiation, and expression of transcription factors such as Ki67, PDX1, and NKX6.1, leading to improved insulin secretion function in MIN-6 pancreatic beta cells. In the glucose-stimulated insulin secretion experiment on day 21, the maximum insulin secretion from the encapsulated structure reached 1.96 ± 0.08 mIU ml-1, representing a 44% increase compared to the control group. Furthermore, conventional capsule scaffolds leaverage the compatibility of natural biomaterials with macrophages to mitigate immune rejection. Here, incorporating curcumin into the capsule scaffold significantly reduced the secretion of pro-inflammatory cytokine (IL-1ß, IL-6, TNF-α, IFN-γ) secretion by RAW264.7 macrophages and T cells in T1DM mice. This approach protected pancreatic islet cells against immune cell infiltration mediated by inflammatory factors and prevented insulitis. Overall, the encapsulated scaffold developed in this study shows promise as a natural platform for clinical treatment of T1DM.


Asunto(s)
Curcumina , Matriz Extracelular Descelularizada , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Andamios del Tejido , Animales , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Andamios del Tejido/química , Curcumina/farmacología , Curcumina/química , Ratones , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Porcinos , Trasplante de Islotes Pancreáticos , Cápsulas/química , Insulina/metabolismo , Diabetes Mellitus Experimental/terapia , Línea Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química
20.
Diabetologia ; 67(9): 1897-1911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245780

RESUMEN

AIMS/HYPOTHESIS: Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. METHODS: The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. RESULTS: In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). CONCLUSIONS/INTERPRETATION: The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.


Asunto(s)
Fibrinolisina , Células Secretoras de Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Ratones Transgénicos , Activador de Tejido Plasminógeno , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Humanos , Fibrinolisina/metabolismo , Ratones , Activador de Tejido Plasminógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA