Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.918
Filtrar
1.
Theriogenology ; 224: 9-18, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714024

RESUMEN

Sertoli cell (SC) proliferation plays an important role in sperm production and quality; however, the regulatory mechanism of SC proliferation is not well understood. This study investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in the regulation of immature boar SC activity. Cell counting kit-8, Seahorse XFe96, mitochondrial respiratory enzyme-related assay kits, and transmission electron microscopy were used to detect SC proliferative viability, oxygen consumption rate (OCR), mitochondrial respiratory enzyme activity, and the ultrastructure of primary cultured SCs in vitro from the testes of 21-day-old boars. A dual luciferase reporter assay was performed to determine the miRNA-mRNA target interaction. Western blotting was used to analyze cell proliferation-related protein expression of p38, p21, proliferating cell nuclear antigen (PCNA), Cyclin-dependent kinase 4 (CDK4), Cyclin D3, and phosphorylated retinoblastoma protein (Rb). Each experiment had a completely randomized design, with three replicates in each experiment. The results showed that the AMPK inhibitor (Compound C, 20 µM-24 h) increased cell proliferation viability, ATP production, and maximal respiration of SCs by 0.64-, 0.12-, and 0.08-fold (p < 0.05), respectively; increased the SC protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.13-, 0.09-, 0.88-, and 0.12-fold (p < 0.05), respectively; and decreased the SC protein expression of p38 and p21 by 0.36- and 0.27-fold (p < 0.05), respectively. The AMPK agonist AICAR (2 mM-6 h) significantly inhibited SC ultrastructure, OCR, mitochondrial respiratory enzyme activity, and cell proliferation-related protein levels. AMPK was validated to be a target gene of miR-1285 based on the result in which the miR-1285 mimic inhibited the luciferase activity of wild-type AMPK by 0.54-fold (p < 0.001). MiR-1285 mimic promoted the OCR of SCs, with 0.45-, 0.15-, 0.21-, and 0.30-fold (p < 0.01) increases in ATP production, basal and maximal respiration, and spare capacity, respectively. MiR-1285 mimic increased the mitochondrial respiratory enzyme activity of SCs, with 0.63-, 0.70-, and 0.97-fold (p < 0.01) increases in NADH-Q oxidoreductase, cytochrome c oxidase, and ATP synthase, respectively. Moreover, the miR-1285 mimic increased the protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.24-, 0.30-, 0.22-, and 0.13-fold (p < 0.05), respectively, and reduced the protein expression of p38 and p21 by 0.58- and 0.66-fold (p < 0.001). MiR-1285 inhibitor showed opposite effects on the above indicators and induced numerous autophagosomes and large lipid droplets in SCs. A high dose of estradiol (10 µM-6 h, showed a promotion of AMPK activation in a previous study) significantly inhibited SC ultrastructure, mitochondrial function, and proliferation-related pathways, while these adverse effects were weakened by Compound C treatment or miR-1285 mimic transfection. Our findings suggest that the activation and inhibition of AMPK induced by specific drugs or synthesized targeted miRNA fragments could regulate immature boar SC proliferative activity by influencing the CDK4/Cyclin D3 pathway and mitochondrial function; this helps to provide a basis for the prevention and treatment of male sterility in clinical practice.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina , Mitocondrias , Células de Sertoli , Animales , Masculino , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Porcinos , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Ciclina D3/metabolismo , Ciclina D3/genética , Transducción de Señal , Regulación de la Expresión Génica/efectos de los fármacos , Células Cultivadas
2.
FASEB J ; 38(9): e23633, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690712

RESUMEN

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis. Stimulated by retinoic acid 8 (STRA8) expression in germ cells additionally suggested that germ cells may have been preparing to enter meiosis prior to their loss. Gene expression analyses of the developing testes of conditional knockout animals further suggested impaired Sertoli cell differentiation, epithelial-to-mesenchymal transition, and the induction of a specific set of genes associated with Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated integrin signaling. Finally, the involvement of YAP/TAZ in Sertoli cell differentiation was confirmed by concomitantly inactivating Yap/Taz in Lats1/2 conditional knockout model, which resulted in a partial rescue of the testicular phenotypic changes. Taken together, these results identify Hippo signaling as a crucial pathway for Sertoli cell development and provide novel insight into Sertoli cell fate maintenance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Proteínas Serina-Treonina Quinasas , Células de Sertoli , Proteínas Supresoras de Tumor , Proteínas Señalizadoras YAP , Animales , Células de Sertoli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Diferenciación Celular/fisiología , Ratones Noqueados , Transducción de Señal , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Testículo/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética
3.
Front Endocrinol (Lausanne) ; 15: 1357594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699384

RESUMEN

In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células de Sertoli , Células de Sertoli/citología , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Masculino , Humanos , Animales , Reproducción/fisiología , Espermatogénesis/fisiología , Procesos de Determinación del Sexo/fisiología
4.
Reprod Fertil Dev ; 362024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739740

RESUMEN

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Asunto(s)
Apoptosis , Proliferación Celular , Dieta Alta en Grasa , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Testículo , Animales , Femenino , Masculino , Embarazo , Apoptosis/fisiología , Lactancia/fisiología , Testículo/metabolismo , Testículo/patología , Ratas , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Espermatogénesis/fisiología , Células de Sertoli/metabolismo , Células de Sertoli/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratas Wistar
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732137

RESUMEN

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Asunto(s)
Busulfano , Interleucina-1beta , Espermatogénesis , Animales , Busulfano/farmacología , Espermatogénesis/efectos de los fármacos , Masculino , Interleucina-1beta/metabolismo , Ratones , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/citología , Testículo/metabolismo , Testículo/efectos de los fármacos , Testículo/citología , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/metabolismo , Células Cultivadas
6.
Zool Res ; 45(3): 601-616, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766744

RESUMEN

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Asunto(s)
Comunicación Celular , Meiosis , Animales , Masculino , Ratones , Meiosis/fisiología , Humanos , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Testículo/metabolismo , Testículo/citología , Espermatogénesis/fisiología , Regulación de la Expresión Génica , Azoospermia/genética , Transcripción Genética , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , Análisis de Expresión Génica de una Sola Célula
7.
Cells ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786072

RESUMEN

Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes. AR and CDYL were found to co-localize and interact in Sertoli cells. The AR-CDYL complex bound to the promoter regions of TNP1 and modulated their transcriptional activity. CDYL acts as a co-regulator of AR transactivation, and its expression is decreased in the Sertoli cells of human testes from patients with azoospermia. The androgen receptor-chromodomain Y-like protein axis plays a crucial role in regulating a network of genes essential for spermatogenesis in Sertoli cells. Disruption of this AR-CDYL regulatory axis may contribute to spermatogenic failure. These findings provide insights into novel molecular mechanisms targeting the AR-CDYL signaling pathway, which may have implications for developing new therapeutic strategies for male infertility.


Asunto(s)
Receptores Androgénicos , Células de Sertoli , Transducción de Señal , Espermatogénesis , Masculino , Células de Sertoli/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Espermatogénesis/genética , Animales , Humanos , Ratones , Ratones Noqueados , Azoospermia/metabolismo , Azoospermia/genética , Azoospermia/patología , Ratones Endogámicos C57BL , Factores de Transcripción , Proteínas de Homeodominio
8.
J Transl Med ; 22(1): 501, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797842

RESUMEN

As a key factor in determining testis size and sperm number, sertoli cells (SCs) play a crucial role in male infertility. Heat stress (HS) reduces SCs counts, negatively impacting nutrient transport and supply to germ cells, and leading to spermatogenesis failure in humans and animals. However, how HS affects the number of SCs remains unclear. We hypothesized that changes in SC metabolism contribute to the adverse effects of HS. In this study, we first observed an upregulation of arachidonic acid (AA), an unsaturated fatty acid after HS exposure by LC-MS/MS metabolome detection. By increasing ROS levels, expression of KEAP1 and NRF2 proteins as well as LC3 and LAMP2, 100 µM AA induced autophagy in SCs by activating oxidative stress (OS). We observed adverse effects of AA on mitochondria under HS with a decrease of mitochondrial number and an increase of mitochondrial membrane potential (MMP). We also found that AA alternated the oxygen transport and absorption function of mitochondria by increasing glycolysis flux and decreasing oxygen consumption rate as well as the expression of mitochondrial electron transport chain (ETC) proteins Complex I, II, V. However, pretreatment with 5 mM NAC (ROS inhibitor) and 2 µM Rotenone (mitochondrial ETC inhibitor) reversed the autophagy induced by AA. In summary, AA modulates autophagy in SCs during HS by disrupting mitochondrial ETC function, inferring that the release of AA is a switch-like response, and providing insight into the underlying mechanism of high temperatures causing male infertility.


Asunto(s)
Ácido Araquidónico , Autofagia , Respuesta al Choque Térmico , Mitocondrias , Células de Sertoli , Regulación hacia Arriba , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Autofagia/efectos de los fármacos , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Ácido Araquidónico/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Nat Commun ; 15(1): 3809, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714644

RESUMEN

Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.


Asunto(s)
Diferenciación Celular , MicroARNs , Ovario , Células de Sertoli , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo , Testículo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citología , Ratones , Ovario/metabolismo , Testículo/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Diferenciación Celular/genética , Procesos de Determinación del Sexo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Diferenciación Sexual/genética , Trastornos del Desarrollo Sexual/genética , Gónadas/metabolismo
10.
Reprod Biol Endocrinol ; 22(1): 36, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570783

RESUMEN

Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.


Asunto(s)
Actinas , Células de Sertoli , Ratas , Animales , Masculino , Actinas/metabolismo , Células de Sertoli/metabolismo , Cadmio , Ratas Sprague-Dawley , Barrera Hematotesticular/metabolismo , Microtúbulos/metabolismo , Testículo/metabolismo , Espermatogénesis/fisiología , Mamíferos
12.
PLoS One ; 19(4): e0292198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574116

RESUMEN

The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.


Asunto(s)
Células Intersticiales del Testículo , Testículo , Masculino , Ratones , Animales , Gatos , Perros , Espermatogénesis , Semen , Células de Sertoli/metabolismo , Péptidos/metabolismo
13.
Cell Tissue Res ; 396(2): 157-175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564020

RESUMEN

The blood-testis barrier (BTB) is formed adjacent to the seminiferous basement membrane. It is a distinct ultrastructure, partitioning testicular seminiferous epithelium into apical (adluminal) and basal compartments. It plays a vital role in developing and maturing spermatocytes into spermatozoa via reorganizing its structure. This enables the transportation of preleptotene spermatocytes across the BTB, from basal to adluminal compartments in the seminiferous tubules. Several bioactive peptides and biomolecules secreted by testicular cells regulate the BTB function and support spermatogenesis. These peptides activate various downstream signaling proteins and can also be the target themself, which could improve the diffusion of drugs across the BTB. The gap junction (GJ) and its coexisting junctions at the BTB maintain the immunological barrier integrity and can be the "gateway" during spermatocyte transition. These junctions are the possible route for toxicant entry, causing male reproductive dysfunction. Herein, we summarize the detailed mechanism of all the regulators playing an essential role in the maintenance of the BTB, which will help researchers to understand and find targets for drug delivery inside the testis.


Asunto(s)
Barrera Hematotesticular , Células de Sertoli , Masculino , Barrera Hematotesticular/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/citología , Humanos , Animales , Uniones Intercelulares/metabolismo , Espermatogénesis/fisiología , Uniones Comunicantes/metabolismo
14.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642435

RESUMEN

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Asunto(s)
Antioxidantes , Apoptosis , Ácido Glutámico , Respuesta al Choque Térmico , Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Transducción de Señal , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Ácido Glutámico/metabolismo , Antioxidantes/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Porcinos , Tiorredoxinas/metabolismo , Células Cultivadas
15.
Nat Aging ; 4(5): 647-663, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649614

RESUMEN

Age-related changes in testicular function can impact health and well-being. The mechanisms underlying age-related testicular dysfunction, such as late-onset hypogonadism (LOH), remain incompletely understood. Using single-cell RNA sequencing on human testes with LOH, we delineated Sertoli cells (SCs) as pivotal metabolic coordinators within the testicular microenvironment. In particular, lysosomal acidity probing revealed compromised degradative capacity in aged SCs, hindering autophagy and phagocytic flux. Consequently, SCs accumulated metabolites, including cholesterol, and have increased inflammatory gene expression; thus, we termed these cells as phago-/auto-lysosomal deregulated SCs. Exposure to a high-fat diet-induced phago-/auto-lysosomal dysregulated-like SCs, recapitulating LOH features in mice. Notably, efferent ductular injection and systemic TRPML1 agonist administration restored lysosomal function, normalizing testosterone deficiency and associated abnormalities in high-fat diet-induced LOH mice. Our findings underscore the central role of SCs in testis aging, presenting a promising therapeutic avenue for LOH.


Asunto(s)
Dieta Alta en Grasa , Hipogonadismo , Lisosomas , Células de Sertoli , Masculino , Células de Sertoli/metabolismo , Animales , Lisosomas/metabolismo , Ratones , Hipogonadismo/metabolismo , Hipogonadismo/genética , Hipogonadismo/patología , Humanos , Dieta Alta en Grasa/efectos adversos , Testículo/metabolismo , Testículo/patología , Testosterona/metabolismo , Autofagia/efectos de los fármacos , Envejecimiento/metabolismo
16.
Toxicol Appl Pharmacol ; 486: 116929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608961

RESUMEN

Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in µg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.


Asunto(s)
Atrazina , Regulación hacia Abajo , Glucólisis , Herbicidas , L-Lactato Deshidrogenasa , Especies Reactivas de Oxígeno , Células de Sertoli , Animales , Masculino , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Atrazina/toxicidad , Ratones , Glucólisis/efectos de los fármacos , Herbicidas/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
17.
Toxicology ; 504: 153789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522820

RESUMEN

Chlorpyrifos is an organophosphate insecticide used to control pests in crops. Thus, humans are constantly exposed through ingestion of contaminated food or water, inhalation of contaminated air, and through the skin. The juvenile and peripubertal periods comprise a window of development of the reproductive system, sensitive to toxic agents. Considering the scarcity of data on exposure to the insecticide during these periods, the aim of this study was to evaluate the effects of chlorpyrifos on the testis during the juvenile and peripubertal periods. Thirty Wistar rats with an initial age of 25 days were distributed into 3 groups: control, which received corn oil (vehicle); CPS5, which received 5 mg/Kg b.w. of chlorpyrifos; and CPS15, which received 15 mg/Kg b.w. of chlorpyrifos. The groups were treated via gavage daily for 40 days and on the 41st experimental day, the animals were anesthetized and submitted to euthanasia to collect the organs. Blood was collected to obtain plasma and testosterone measurement. The testicles were removed, weighed and used for sperm count analyses, histopathological and morphometric analyzes and for oxidative stress analyses. Spermatozoa from the vas deferens were collected for analyzes of sperm morphology and acrosome integrity. The results showed that the two concentrations of chlorpyrifos caused a decrease in the number of Leydig and Sertoli cells and germ cells and increased the number of morphologically abnormal sperm and sperm with acrosomal damage. Furthermore, a decrease in lipid peroxidation was observed in the CPS5 and CPS15 groups, and a decrease in glutathione-S-transferase activity in the CPS5 group. We conclude that exposure to chlorpyrifos harms the daily production of sperm, as well as their quality, in addition to causing an imbalance in the oxidoreductive balance of the testicle.


Asunto(s)
Cloropirifos , Insecticidas , Células Intersticiales del Testículo , Ratas Wistar , Células de Sertoli , Espermatozoides , Animales , Masculino , Cloropirifos/toxicidad , Insecticidas/toxicidad , Espermatozoides/efectos de los fármacos , Espermatozoides/patología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/patología , Células Intersticiales del Testículo/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patología , Ratas , Maduración Sexual/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Testosterona/sangre , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Recuento de Espermatozoides
18.
Nat Commun ; 15(1): 2796, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555298

RESUMEN

The Y-linked SRY gene initiates mammalian testis-determination. However, how the expression of SRY is regulated remains elusive. Here, we demonstrate that a conserved steroidogenic factor-1 (SF-1)/NR5A1 binding enhancer is required for appropriate SRY expression to initiate testis-determination in humans. Comparative sequence analysis of SRY 5' regions in mammals identified an evolutionary conserved SF-1/NR5A1-binding motif within a 250 bp region of open chromatin located 5 kilobases upstream of the SRY transcription start site. Genomic analysis of 46,XY individuals with disrupted testis-determination, including a large multigenerational family, identified unique single-base substitutions of highly conserved residues within the SF-1/NR5A1-binding element. In silico modelling and in vitro assays demonstrate the enhancer properties of the NR5A1 motif. Deletion of this hemizygous element by genome-editing, in a novel in vitro cellular model recapitulating human Sertoli cell formation, resulted in a significant reduction in expression of SRY. Therefore, human NR5A1 acts as a regulatory switch between testis and ovary development by upregulating SRY expression, a role that may predate the eutherian radiation. We show that disruption of an enhancer can phenocopy variants in the coding regions of SRY that cause human testis dysgenesis. Since disease causing variants in enhancers are currently rare, the regulation of gene expression in testis-determination offers a paradigm to define enhancer activity in a key developmental process.


Asunto(s)
Disgenesia Gonadal , Testículo , Animales , Femenino , Humanos , Masculino , Línea Celular , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Células de Sertoli/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo
19.
Cells ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534388

RESUMEN

The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.


Asunto(s)
Carcinoma Pulmonar de Lewis , Células de Sertoli , Masculino , Humanos , Porcinos , Animales , Ratones , Células de Sertoli/metabolismo , Túbulos Seminíferos/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Inmunosupresores/uso terapéutico , Tolerancia Inmunológica
20.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503350

RESUMEN

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Asunto(s)
Acetatos , Factor Neurotrófico Derivado de la Línea Celular Glial , Éteres Difenilos Halogenados , Fenoles , Células de Sertoli , Ratones , Animales , Masculino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Testículo/metabolismo , Espermatogonias , Espermatogénesis , Tretinoina/metabolismo , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA