Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.270
Filtrar
1.
Chemosphere ; 358: 142199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692366

RESUMEN

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Asunto(s)
Arsénico , Biodegradación Ambiental , Cadmio , Cannabis , Cobre , Plomo , Metales Pesados , Contaminantes del Suelo , Suelo , Cannabis/crecimiento & desarrollo , Cannabis/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Metales Pesados/metabolismo , Plomo/metabolismo , Plomo/análisis , Cadmio/metabolismo , Cadmio/análisis , Arsénico/metabolismo , Arsénico/análisis , Cobre/análisis , Suelo/química , Biomasa , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
2.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698306

RESUMEN

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Asunto(s)
Biomasa , Cadmio , Fertilizantes , Micorrizas , Rizosfera , Selenio , Microbiología del Suelo , Triticum , Triticum/crecimiento & desarrollo , Triticum/microbiología , Triticum/efectos de los fármacos , Micorrizas/fisiología , Cadmio/análisis , Cadmio/toxicidad , Fertilizantes/análisis , Selenio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Microbiota/efectos de los fármacos
3.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698342

RESUMEN

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Asunto(s)
Cadmio , Oryza , Proteínas de Plantas , Proteómica , Plantones , Selenio , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Selenio/farmacología , Cadmio/toxicidad , Plantones/genética , Plantones/efectos de los fármacos , Plantones/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Perfilación de la Expresión Génica , Transcriptoma , Genes de Plantas
4.
Plant Physiol Biochem ; 211: 108677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703499

RESUMEN

Phosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress. The results indicate that Cd significantly inhibits plant growth, while sufficient P alleviates this inhibition. Under Cd exposure, P sufficiency resulted in increased Cd accumulation in roots, along with reduced oxidative stress levels (superoxide anion and hydrogen peroxide contents were reduced by 16.8% and 30.1%, respectively). This phenomenon can be attributed to the enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), as well as increased levels of antioxidants including ascorbic acid (AsA) and flavonoids under sufficient P conditions. A total of 4208 differentially expressed genes (DEGs) and 552 differentially accumulated metabolites (DAMs) were identified in the transcriptomic and metabolomic analyses, with 2596 DEGs and 113 DAMs identified among treatments with different P levels under Cd stress, respectively. Further combined analyses reveal the potential roles of several pathways in P-mediated Cd detoxification, including flavonoid biosynthesis, ascorbate biosynthesis, and plant hormone signal transduction pathways. Notably, sufficient P upregulates the expression of genes including HMA, ZIP, NRAMP and CAX, all predicted to localize to the cell membrane. This may elucidate the heightened Cd accumulation under sufficient P conditions. These findings provide insights into the roles of P in enhancing plant resistance to Cd stress and improving of phytoremediation.


Asunto(s)
Cadmio , Fósforo , Raíces de Plantas , Salix , Transcriptoma , Cadmio/metabolismo , Cadmio/toxicidad , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fósforo/metabolismo , Salix/metabolismo , Salix/genética , Salix/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Antioxidantes/metabolismo , Perfilación de la Expresión Génica
5.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703500

RESUMEN

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Asunto(s)
Cadmio , Depsidos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cadmio/metabolismo , Depsidos/metabolismo , Metabolismo Secundario/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Benzofuranos/metabolismo , Ácido Rosmarínico , Cinamatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Rayos Ultravioleta , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Abietanos/metabolismo , Abietanos/biosíntesis , Hidroxibenzoatos/metabolismo
6.
Ecotoxicol Environ Saf ; 278: 116422, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705040

RESUMEN

Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 µmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 µmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.


Asunto(s)
Cadmio , Germinación , Hidroponía , Lactuca , Microplásticos , Estrés Oxidativo , Contaminantes Químicos del Agua , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Cadmio/toxicidad , Microplásticos/toxicidad , Germinación/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Fotosíntesis/efectos de los fármacos , Adsorción , Cloruro de Polivinilo , Especies Reactivas de Oxígeno/metabolismo
7.
Plant Physiol Biochem ; 211: 108675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705047

RESUMEN

Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R-grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.


Asunto(s)
Antioxidantes , Cadmio , Luz , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/metabolismo , Hydrocharitaceae/metabolismo , Hydrocharitaceae/efectos de los fármacos , Hydrocharitaceae/efectos de la radiación , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ciclopentanos/metabolismo , Fotosíntesis/efectos de los fármacos , Glutatión/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz Roja
8.
Ecotoxicol Environ Saf ; 278: 116397, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714088

RESUMEN

The soil pollution caused by cadmium (Cd) poses a significant threat to the environment. Therefore, identifying plants that can effectively remediate Cd-contaminated soils is urgently needed. In this study, physiological, cytological, and transcriptome analyses were performed to comprehensively understand the changes in Artemisia argyi under Cd stress. Physiological and cytological analyses indicated that A. argyi maintained normal growth with intact cell structure under Cd stress levels up to 10 mg/kg. Cytological analysis showed that Cd precipitation in leaf cells occurred in the cytoplasm and intercellular spaces. As the levels of Cd stress increased, proline accumulation in leaves increased, whereas soluble protein and soluble sugar initially increased, followed by a subsequent decline. The translocation factor was above 1 under 0.6 mg/kg Cd stress but decreased when it exceeded this concentration. Transcriptome analyses revealed several crucial Cd-influenced pathways, including amino acid, terpenoid, flavonoid, and sugar metabolisms. This study not only proved that A. argyi could enrich Cd in soil but also revealed the response of A. argyi to Cd and its resistance mechanisms, which provided insight into the cleaner production of A. argyi and the remediation of Cd-contaminated soil.


Asunto(s)
Artemisia , Cadmio , Contaminantes del Suelo , Artemisia/genética , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Hojas de la Planta , Perfilación de la Expresión Génica , Adaptación Fisiológica/genética , Transcriptoma/efectos de los fármacos , Biodegradación Ambiental , Suelo/química
9.
Ecotoxicol Environ Saf ; 278: 116411, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714085

RESUMEN

Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.


Asunto(s)
Cadmio , Perfilación de la Expresión Génica , Medicago sativa , Melatonina , Medicago sativa/efectos de los fármacos , Medicago sativa/genética , Cadmio/toxicidad , Melatonina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/efectos de los fármacos
10.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691200

RESUMEN

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Asunto(s)
Arsénico , Cadmio , Monitoreo del Ambiente , Oryza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Ghana , Suelo/química , Oryza/química , Cadmio/análisis , Concentración de Iones de Hidrógeno , Arsénico/análisis , Plomo/análisis , Agricultura
11.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719837

RESUMEN

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Asunto(s)
Cadmio , Unión Proteica , Proteínas Ligasas SKP Cullina F-box , Cadmio/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Dominios Proteicos , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
12.
J Pineal Res ; 76(4): e12957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803089

RESUMEN

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl > 800 mM) and heavy metal-resistant (Cd >3 mM) rhizobacterium Bacillus safensis EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca2+ uptake and the K+/Na+ (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O2-, MDA, and H2O2) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.


Asunto(s)
Bacillus , Cadmio , Glycine max , Melatonina , Melatonina/metabolismo , Glycine max/metabolismo , Glycine max/efectos de los fármacos , Glycine max/microbiología , Cadmio/metabolismo , Bacillus/metabolismo , Estrés Salino , Estrés Fisiológico/efectos de los fármacos , Tolerancia a la Sal
13.
Nutrients ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794706

RESUMEN

Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.


Asunto(s)
Cadmio , Enfermedad Hepática Inducida por Sustancias y Drogas , Escherichia coli , Microbioma Gastrointestinal , Metalotioneína , Ratones Endogámicos C57BL , Probióticos , Animales , Probióticos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metalotioneína/metabolismo , Cadmio/toxicidad , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Disbiosis , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Discov Med ; 36(184): 1020-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798261

RESUMEN

BACKGROUND: Long-term exposure to cadmium can induce renal toxicity in rats, leading to endoplasmic reticulum (ER) stress and iron death. Notably, in cadmium-exposed rats, there is an increased expression of UNC93B1 (unc-93 homolog B1). Consequently, our investigation aims to determine the impact of UNC93B1 on ER stress and iron death in cadmium-exposed rats by modulating the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway. METHODS: A cadmium-exposed rat model was established by intrabacally injecting chromium chloride (5 mg/kg, once a day for 4 weeks), and the levels of UCd (urine cadmium), UNAG (urine N-acetyl-ß-D-glucosaminidase), and UCr (urine creatinine) in urine were assessed. A silent UNC93B1 lentivirus was constructed, and STING agonists were procured and administered to the rats. Subsequently, kidney tissues were extracted post-mortem, and pathological changes in renal tissue were observed through hematoxylin and eosin (HE) staining. The expression and mRNA levels of UNC93B1, cGAS, and STING were examined using western blot (WB) and polymerase chain reaction (PCR). Autophagy proteins (light chain 3 (LC3), Beclin-1, p62) were also assessed by WB. Additionally, iron concentration was determined using a kit, while oxidative stress markers (cytochrome oxidase subunit 2 (COX2), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH)) were measured through enzyme-linked immunosorbent assay (ELISA). Furthermore, endoplasmic reticulum stress proteins (protein kinase RNA-like ER kinase (PERK), CCAAT enhance-binding protein homologous protein (CHOP), activating transcription factor-4 (ATF4)) were analyzed by WB. RESULTS: Wstaining, WB, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), ELISA, and HE staining collectively revealed a heightened expression of UNC93B1, cGAS, and STING, accompanied by increased levels of autophagy, oxidative stress, and ER stress in cadmium-exposed rats (p < 0.05). Nephrotoxicity exhibited a reduction following the inhibition of UNC93B1, leading to decreased levels of oxidative stress, autophagy, and ER stress (p < 0.05). Notably, this observed phenomenon was reversed upon the addition of STING agonists, suggesting that UNC93B1 might exert a nephroprotective effect in cadmium-exposed rats through modulation of the cGAS-STING pathway. CONCLUSIONS: The inhibition of UNC93B1 mitigates nephrotoxicity in cadmium-exposed rats, and this protective effect is mechanistically linked to the cGAS-STING pathway.


Asunto(s)
Cadmio , Estrés del Retículo Endoplásmico , Proteínas de la Membrana , Animales , Ratas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Cadmio/toxicidad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Hierro/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Ratas Sprague-Dawley , Estrés Oxidativo/efectos de los fármacos
15.
Water Environ Res ; 96(6): e11059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38812097

RESUMEN

The effective treatment of cadmium (Cd) in smelting wastewater is of great industrial importance. This study investigates the efficient removal of Cd from real industrial smelting wastewater via chemical precipitation using a series of experiments. In particular, the effects of different precipitants, agitation conditions, and the addition of NaOCl on Cd removal and pH variation are investigated. CaO (3.75 g/L), NaOH (3.50 g/L), and Ca(OH)2 (3.75 g/L) are found to be effective in elevating the wastewater pH and achieving high Cd removal rates (>99.9%), while the use of NaOH as a precipitant maintains a high Cd removal rate even at low agitation intensities. The properties of the produced sludge and supernatant are also determined using moisture content, particle size, and sludge leaching analyses due to the importance of economic and environmental sustainability in filtration, dewatering, and waste disposal processes. In addition, the addition of 2% NaOCl is tested, revealing that it can improve the Cd removal efficiency of Ca(OH)2, thus potentially reducing processing costs and enhancing the environmental benefits. Overall, these findings offer valuable insights into the removal of Cd from smelting wastewater, with potential implications for both environmental sustainability and economic viability. PRACTITIONER POINTS: CaO, NaOH, and Ca(OH)2 effectively remove Cd (>99.9%) from smelting wastewater. The use of NaOH leads to high Cd removal rates even at low agitation speeds. Adding 2% NaOCl can reduce the Ca(OH)2 dose for more economical Cd removal.


Asunto(s)
Cadmio , Precipitación Química , Residuos Industriales , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua , Cadmio/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Hidróxido de Calcio/química
16.
PeerJ ; 12: e17410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818458

RESUMEN

The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cadmio , Regulación de la Expresión Génica de las Plantas , Populus , Estrés Fisiológico , Populus/genética , Populus/metabolismo , Populus/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genoma de Planta , Regiones Promotoras Genéticas/genética
17.
Sci Rep ; 14(1): 12254, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806593

RESUMEN

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Asunto(s)
Cacao , Cadmio , Fermentación , Cacao/metabolismo , Concentración de Iones de Hidrógeno , Cadmio/metabolismo , Gusto , Calor , Aromatizantes/metabolismo , Temperatura
18.
Food Chem ; 452: 139572, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733686

RESUMEN

The discarded longan shell-derived porous carbon material (LPC) served as a scaffold for synthesizing bismuth nanoparticle-loaded longan porous carbon nanocomposite (BiNPs@LPC) via a hydrothermal method. Then BiNPs@LPC was utilized to modify screen-printed carbon electrodes (SPCE) for simultaneous detection of Pb(II) and Cd(II) by square wave anodic stripping voltammetry (SWASV). The material was thoroughly characterized by scanning electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller analysis, electrochemical impedance spectroscopy and cyclic voltammetry. BiNPs@LPC exhibited abundant porous structures, high surface area, and numerous active sites, which could improve significantly response sensitivity. Under optimal conditions, the peak currents of Pb(II) and Cd(II) exhibited favorable linear relationships with the concentration within a range of 0.1-150 µg L-1, with detection limits (S/N = 3) of 0.02 µg L-1 and 0.03 µg L-1, respectively. BiNPs@LPC/SPCE demonstrated remarkable selectivity, stability and repeatability. The proposed method was successfully applied for the detection of Pb(II) and Cd(II) in seafoods achieving satisfying recovery of 97.8%-108.3% and 96.7%-106.4%. These excellent test properties were coupled with convenience for batch preparation of the modified electrodes, highlighting its potential for practical applications in heavy metal detection of real samples.


Asunto(s)
Bismuto , Cadmio , Carbono , Técnicas Electroquímicas , Contaminación de Alimentos , Plomo , Alimentos Marinos , Bismuto/química , Plomo/análisis , Plomo/química , Cadmio/química , Cadmio/análisis , Alimentos Marinos/análisis , Carbono/química , Contaminación de Alimentos/análisis , Porosidad , Animales , Nanopartículas del Metal/química , Límite de Detección , Electrodos
19.
Food Chem ; 452: 139549, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762939

RESUMEN

The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 µg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.


Asunto(s)
Cadmio , Contaminación de Alimentos , Límite de Detección , Mediciones Luminiscentes , Cadmio/análisis , Contaminación de Alimentos/análisis , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Animales , Luminiscencia , Pruebas en el Punto de Atención
20.
J Am Heart Assoc ; 13(9): e033474, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38700020

RESUMEN

BACKGROUND: Copper exposure is reported to be associated with increased risk of stroke. However, the association of copper exposure with subclinical carotid atherosclerosis remains unclear. METHODS AND RESULTS: This observational study included consecutive participants from Xinqiao Hospital between May 2020 and August 2021. Blood metals were measured using inductively coupled plasma mass spectrometry and carotid atherosclerosis was assessed using ultrasound. Modified Poisson regression was performed to evaluate the associations of copper and other metals with subclinical carotid plaque presence. Blood metals were analyzed as categorical according to the quartiles. Multivariable models were adjusted for age, sex, body mass index, education, smoking, drinking, hypertension, diabetes, dyslipidemia, estimated glomerular filtration rate, and coronary artery disease history. Bayesian Kernel Machine Regression was conducted to evaluate the overall association of metal mixture with subclinical carotid plaque presence. One thousand five hundred eighty-five participants were finally enrolled in our study, and carotid plaque was found in 1091 subjects. After adjusting for potential confounders, metal-progressively-adjusted models showed that blood copper was positively associated with subclinical carotid plaque (relative risk according to comparing quartile 4 to quartile 1 was 1.124 [1.021-1.238], relative risk according to per interquartile increment was 1.039 [1.008-1.071]). Blood cadmium and lead were also significantly associated with subclinical carotid plaque. Bayesian Kernel Machine Regression analyses suggested a synergistic effect of copper-cadmium-lead mixture on subclinical carotid plaque presence. CONCLUSIONS: Our findings identify copper as a novel risk factor of subclinical carotid atherosclerosis and show the potential synergistic proatherogenic effect of copper, cadmium, and lead mixture.


Asunto(s)
Enfermedades de las Arterias Carótidas , Cobre , Humanos , Femenino , Masculino , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/epidemiología , Cobre/sangre , Persona de Mediana Edad , Factores de Riesgo , Anciano , Placa Aterosclerótica/sangre , Cadmio/sangre , Medición de Riesgo , China/epidemiología , Biomarcadores/sangre , Enfermedades Asintomáticas , Plomo/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA