Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Yakugaku Zasshi ; 144(7): 715-732, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38945846

RESUMEN

An aqueous solution of 2,3-cis gallate type catechin (-)-epigallocatechin-3-O-gallate (EGCg) and caffeine afforded a precipitate of Creaming-down Phenomenon, which crystallized slowly for about three months to give a colorless block crystal. By X-ray crystallographic analysis, the crystal was determined to be a 2 : 2 complex of EGCg and caffeine, in which caffeine molecules were captured in a hydrophobic space formed with three aromatic A, B, and B' rings of EGCg. It was considered that the solubility of the 2 : 2 complex in water rapidly decreased and the 2 : 2 complex precipitated from aqueous solution. The hydrophobic spaces of EGCg captured a variety of heterocyclic compounds, and the molecular capture abilities of heterocyclic compounds using EGCg from the aqueous solutions were evaluated. Since the C ring of EGCg has two chiral carbon atoms, C2 and C3, the hydrophobic space of EGCg was a chiral space. EGCg captured diketopiperazine cyclo(Pro-Xxx) (Xxx=Phe, Tyr) and pharmaceuticals with a xanthine skeleton, proxyphylline and diprophylline, in the hydrophobic space, and recognized their chirality.


Asunto(s)
Cafeína , Catequina , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , , Catequina/química , Catequina/análogos & derivados , Té/química , Cafeína/química , Cristalografía por Rayos X , Estereoisomerismo , Agua/química , Cristalización , Soluciones , Compuestos Heterocíclicos/química , Xantinas/química
2.
Chem Commun (Camb) ; 60(58): 7431-7434, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38938210

RESUMEN

The 1967 attempt of structural analysis of the solid-state complex of caffeine and pyrogallol was a pioneering structural investigation in the supramolecular chemistry of caffeine, of what today would easily be considered an archetype of a model pharmaceutical cocrystal. Re-investigating this historically important system demonstrates that this long overlooked complex is most likely a tetrahydrate with a different structure and composition than initially proposed, and provides the crystal structure of the anhydrous cocrystal.


Asunto(s)
Cafeína , Pirogalol , Cafeína/química , Pirogalol/química , Pirogalol/análogos & derivados , Estructura Molecular , Cristalización , Modelos Moleculares , Cristalografía por Rayos X
3.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930987

RESUMEN

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Asunto(s)
Arachis , Cafeína , Triclosán , Cafeína/química , Cafeína/aislamiento & purificación , Triclosán/química , Triclosán/aislamiento & purificación , Arachis/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Tamaño de la Partícula , Purificación del Agua/métodos
4.
Anal Methods ; 16(24): 3993-4001, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38855887

RESUMEN

A facile electrochemical approach is proposed for the synchronous determination of acetaminophen (ACP), codeine (COD) and caffeine (CAF) utilizing unmodified screen-printed electrodes (SPEs). The determination of ACP, COD and CAF has been explored across different supporting electrolytes including sulfuric acid (H2SO4), hydrochloric acid (HCl), phosphoric acid (H3PO4) and Briton Robinson (B.R) buffer solutions. It was found that a 0.05 mol L-1 sulfuric acid solution is an optimal supporting electrolyte utilized for voltammetric analysis of ACP, COD, and CAF with improved sensitivity, stability, and reproducibility. The electro-analytical sensing of ACP, COD and CAF was investigated using SPEs within linear concentration ranges of 3.0-35.0 µmol L-1, 10-160 µmol L-1 and 10-160 µmol L-1 and revealed competitively low limits of detection (3S/N) of 0.9, 4.8 and 6.3 µmol L-1 for ACP, COD and CAF, respectively. The results indicated the possibility of such a simple and quick electroanalytical protocol for online monitoring of pharmaceutical formulations comprising ACP, COD, and CAF drugs in human fluids with satisfactory recovery.


Asunto(s)
Acetaminofén , Cafeína , Codeína , Técnicas Electroquímicas , Electrodos , Grafito , Acetaminofén/análisis , Acetaminofén/química , Codeína/análisis , Codeína/química , Cafeína/análisis , Cafeína/química , Humanos , Grafito/química , Técnicas Electroquímicas/métodos , Límite de Detección , Reproducibilidad de los Resultados
5.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893465

RESUMEN

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Asunto(s)
Antioxidantes , Ilex paraguariensis , Polifenoles , Ilex paraguariensis/química , Antioxidantes/química , Antioxidantes/análisis , Polifenoles/química , Polifenoles/análisis , Taninos/análisis , Taninos/química , Flavonoides/análisis , Flavonoides/química , Carotenoides/química , Carotenoides/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Cafeína/análisis , Cafeína/química , Hidroxibenzoatos/química , Hidroxibenzoatos/análisis , Bebidas/análisis
6.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38717304

RESUMEN

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Asunto(s)
Simulación de Dinámica Molecular , Canal Liberador de Calcio Receptor de Rianodina , Zinc , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Zinc/química , Zinc/metabolismo , Ligandos , Calcio/química , Calcio/metabolismo , Teoría Funcional de la Densidad , Sitios de Unión , Unión Proteica , Dedos de Zinc , Cafeína/química , Cafeína/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Humanos
7.
Chem Biodivers ; 21(7): e202400050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719741

RESUMEN

Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.


Asunto(s)
Cafeína , Purinas , Humanos , Cafeína/química , Cafeína/metabolismo , Cafeína/farmacología , Purinas/química , Purinas/biosíntesis , Purinas/farmacología , Purinas/metabolismo , Animales , Café/química , Café/metabolismo
8.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38723178

RESUMEN

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Asunto(s)
Budesonida , Cápsulas , Sistemas de Liberación de Medicamentos , Íleon , Humanos , Íleon/metabolismo , Íleon/efectos de los fármacos , Adulto , Sistemas de Liberación de Medicamentos/métodos , Masculino , Budesonida/administración & dosificación , Budesonida/farmacocinética , Budesonida/química , Femenino , Cápsulas/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Imagen por Resonancia Magnética/métodos , Administración Oral , Persona de Mediana Edad , Cafeína/química , Cafeína/administración & dosificación , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/efectos de los fármacos , Adulto Joven
9.
Eur J Pharm Sci ; 198: 106788, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705421

RESUMEN

Physiologically based pharmacokinetic (PBPK) models can help to understand the effects of gastric emptying on pharmacokinetics and in particular also provide a platform for understanding mechanisms of food effects, as well as extrapolation between different postprandial conditions, whether standardized clinical or patient-oriented, non-clinical conditions. By integrating biorelevant dissolution data from the GastroDuo dissolution model into a previously described mechanistic model of fed-state gastric emptying, we simulated the effects of a high-calorie high-fat meal on the pharmacokinetics of sildenafil, febuxostat, acetylsalicylic acid, theobromine and caffeine. The model was able to simulate the variability in Cmax and tmax caused by the presence of the stomach road. The main influences investigated to affect the gastric emptying process were drug solubility (theobromine and caffeine), tablet dissolution rate (acetylsalicylic acid) and sensitivity to gastric motility (sildenafil and febuxostat). Finally, we showed how PBPK models can be used to extrapolate pharmacokinetics between different prandial states using theobromine as an example with results from a clinical study being presented.


Asunto(s)
Simulación por Computador , Vaciamiento Gástrico , Modelos Biológicos , Periodo Posprandial , Solubilidad , Vaciamiento Gástrico/fisiología , Periodo Posprandial/fisiología , Humanos , Febuxostat/farmacocinética , Febuxostat/química , Teobromina/farmacocinética , Teobromina/química , Cafeína/farmacocinética , Cafeína/química , Cafeína/administración & dosificación , Citrato de Sildenafil/farmacocinética , Citrato de Sildenafil/química , Liberación de Fármacos , Aspirina/farmacocinética , Aspirina/química , Aspirina/administración & dosificación
10.
Chemosphere ; 358: 142222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714249

RESUMEN

In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.


Asunto(s)
Diclofenaco , Peróxido de Hidrógeno , Ibuprofeno , Aprendizaje Automático , Redes Neurales de la Computación , Diclofenaco/química , Peróxido de Hidrógeno/química , Ibuprofeno/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cafeína/química , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Ozono/química , Máquina de Vectores de Soporte , Análisis Costo-Beneficio , Rayos Ultravioleta , Catálisis , Fotólisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38781815

RESUMEN

In this work, a new ultra-performance liquid chromatography method based on photodiode array detection (UPLC-PDA) was first developed for the quantitative analysis of the quaternary mixture of ascorbic acid (AA), paracetamol (PAR), caffeine (CAF) and chlorpheniramine maleate (CPA) in a commercial dosage form. The developed UPLC-PDA method offered a new possibility for the co-determination of four active ingredients in a drug combination with short run time and simple sample preparation. The successful chromatographic separation of the four drugs was performed using a Waters Acquity UPLC BEH C18 column (1.7 µm 2.1 × 100 mm) (Mildford, USA) and a mobile phase consisting of water (12 %), acetonitrile (13 %) and 0.1 M H3PO4 (75 %) at a flow rate of 0.25 mL/min. The validation of the proposed UPLC-PDA approach was verified by analyzing synthetic mixtures, inter- and intra-day experiments, and commercial powder samples and provided satisfactory results.


Asunto(s)
Acetaminofén , Cafeína , Clorfeniramina , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Cafeína/análisis , Cafeína/química , Acetaminofén/análisis , Acetaminofén/química , Modelos Lineales , Clorfeniramina/análisis , Clorfeniramina/química , Límite de Detección , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Combinación de Medicamentos
12.
Food Chem ; 448: 139138, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569407

RESUMEN

Tea cream formed in hot and strong tea infusion while cooling deteriorates quality and health benefits of tea. However, the interactions among temporal contributors during dynamic formation of tea cream are still elusive. Here, by deletional recombination experiments and molecular dynamics simulation, it was found that proteins, caffeine (CAF), and phenolics played a dominant role throughout the cream formation, and the contribution of amino acids was highlighted in the early stage. Furthermore, CAF was prominent due to its extensive binding capacity and the filling complex voids property, and caffeine-theaflavins (TFs) complexation may be the core skeleton of the growing particles in black tea infusion. In addition to TFs, the unidentified phenolic oxidation-derived products (PODP) were confirmed to contribute greatly to the cream formation.


Asunto(s)
Cafeína , Camellia sinensis , Catequina , Simulación de Dinámica Molecular , , Té/química , Cafeína/química , Cafeína/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/crecimiento & desarrollo , Catequina/química , Catequina/metabolismo , Biflavonoides/química , Biflavonoides/metabolismo , Fenoles/química , Fenoles/metabolismo , Manipulación de Alimentos , Calor
13.
An Acad Bras Cienc ; 96(1): e20230067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656055

RESUMEN

Platinum nanoparticles supported by carbon nanotubes were obtained by a simple chemical route and used for preparation of electrochemical sensor towards caffeine determination. Carbon nanotubes were used before and after an acid treatment, yielding two different materials. Morphological and structural characterization of these materials showed platinum nanoparticles (size around 12 nm) distributed randomly along carbon nanotubes. Modified electrodes were directly prepared through a dispersion of these materials. Voltammetric studies in the presence of caffeine revealed an electrocatalytic effect of platinum oxides, electrochemically produced from the chemical oxidation of the platinum nanoparticles. This behavior was explored in the development a selective method for caffeine determination based on platinum oxide reduction at a lower potential value (+0.45 V vs. Ag/AgCl). Using the best set of experimental conditions, it was shown a linear relationship for the caffeine concentration ranging from 5.0 to 25 µmol L-1 with a sensitivity of 449 nA L µmol-1. Limits of detection and quantification of 0.54 and 1.80 µmol L-1 were calculated, respectively. Recovery values for real samples of caffeine pharmaceutical formulations between 98.6% and 101.0% (n = 3) were obtained using the proposed procedure. Statistical calculations showed good concordance (95% confidence level) between the added and recovery values.


Asunto(s)
Cafeína , Técnicas Electroquímicas , Nanopartículas del Metal , Nanotubos de Carbono , Platino (Metal) , Nanotubos de Carbono/química , Cafeína/análisis , Cafeína/química , Platino (Metal)/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Reproducibilidad de los Resultados , Oxidación-Reducción
14.
Magn Reson Med ; 92(2): 459-468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38469685

RESUMEN

PURPOSE: To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS: An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS: Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation by ß $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION: These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.


Asunto(s)
Cafeína , Hígado , Isótopos de Nitrógeno , Cafeína/farmacología , Cafeína/química , Animales , Ratas , Hígado/diagnóstico por imagen , Hígado/metabolismo , Masculino , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ratas Sprague-Dawley , Espectroscopía de Resonancia Magnética , Pruebas de Función Hepática
15.
Eur J Clin Pharmacol ; 80(7): 1079-1087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546840

RESUMEN

PURPOSE: To investigate the physicochemical compatibility of caffeine citrate and caffeine base injections with 43 secondary intravenous (IV) drugs used in Neonatal Intensive Care Unit (NICU) settings. METHODS: Caffeine citrate (20 mg/mL or 10 mg/mL) or caffeine base injection (10 mg/mL) were mixed in a volume ratio of 1:1 with the secondary drug solution to simulate Y-site co-administration procedures in NICUs. Physical compatibility was evaluated based on visual observation for 2 h, against a black and white background and under polarised light, for changes in colour, precipitation, haze and evolution of gas. Chemical compatibility was determined from caffeine concentration measurements, using a validated high-performance liquid chromatography assay. RESULTS: Six of the 43 secondary drugs tested (aciclovir, amphotericin (liposomal), furosemide, hydrocortisone, ibuprofen and ibuprofen lysine) were physically incompatible with caffeine citrate undiluted injection (20 mg/mL), at their high-end, clinically relevant concentrations for NICU settings. However, when tested at lower concentrations, hydrocortisone (1 mg/mL) was physicochemically compatible, whereas furosemide (0.2 mg/mL) was physically incompatible with caffeine citrate. The six drugs which showed physical incompatibility with caffeine citrate 20 mg/mL injection were also physically incompatible with caffeine citrate 10 mg/mL solution. All 43 secondary drugs tested were physicochemically compatible with caffeine base injection. CONCLUSIONS: Most secondary test drugs, except aciclovir, amphotericin (liposomal), furosemide, hydrocortisone, ibuprofen and ibuprofen lysine, were physicochemically compatible with caffeine citrate injection. Caffeine base injection was physicochemically compatible with all 43 test drugs tested.


Asunto(s)
Cafeína , Citratos , Incompatibilidad de Medicamentos , Cafeína/química , Cafeína/administración & dosificación , Humanos , Citratos/química , Citratos/administración & dosificación , Recién Nacido , Cuidado Intensivo Neonatal , Unidades de Cuidado Intensivo Neonatal , Aciclovir/administración & dosificación , Aciclovir/química
16.
Int J Pharm ; 653: 123859, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307401

RESUMEN

This study explores the innovative production of personalized bilayer tablets, integrating two advanced manufacturing techniques: Droplet Deposition Modeling (DDM) and Injection Molding (IM). Unlike traditional methods limited to customizing dense bilayer medicines, our approach uses Additive Manufacturing (AM) to effectively adjust drug release profiles. Focusing on Caffeine and Paracetamol, we found successful processing for both DDM and IM using Caffeine formulation. The high viscosity of Paracetamol formulation posed challenges during DDM processing. Integrating Paracetamol formulation for the over-molding process proved effective, demonstrating IM's versatility in handling complex formulations. Varying infill percentages in DDM tablets led to distinct porosities affecting diverse drug release profiles in DDM-fabricated tablets. In contrast, tablets with high-density structures formed through the over-molding process displayed slower and more uniform release patterns. Combining DDM and IM techniques allows for overcoming the inherent limitations of each technique independently, enabling the production of bilayer tablets with customizable drug release profiles. The study's results offer promising insights into the future of personalized medicine, suggesting new pathways for the development of customized oral dosage forms.


Asunto(s)
Acetaminofén , Cafeína , Liberación de Fármacos , Cafeína/química , Comprimidos/química , Impresión Tridimensional , Tecnología Farmacéutica/métodos
17.
Mol Pharm ; 21(3): 1479-1489, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373877

RESUMEN

In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.


Asunto(s)
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopía de Resonancia Magnética
18.
Sci Rep ; 14(1): 4453, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396007

RESUMEN

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Asunto(s)
Antioxidantes , Coffea , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Cafeína/farmacología , Cafeína/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/farmacología , Antibacterianos/farmacología , Coffea/química
19.
Int J Pharm ; 647: 123520, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858637

RESUMEN

Hydrotropism is a convenient way to increase the solubility of drugs by up to several orders of magnitude, and even though it has been researched for decades with both experimental and simulation methods, its mechanism is still unknown. Here, we use caffeine/sodium benzoate (CAF-SB) as model system to explore the behaviour of caffeine solubility enhancement in water through NMR spectroscopy and neutron total scattering. 1H NMR shows strong interaction between caffeine and sodium benzoate in water. Neutron total scattering combined with empirical potential structure refinement, a systematic method to study the solution structure, reveals π-stacking between caffeine and the benzoate anion as well as Coulombic interactions with the sodium cation. The strongest hydrogen bond interaction in the system is between benzoate and water, which help dissolve CAF-SB complex and increase the solubility of CAF in water. Besides, the stronger interaction between CAF and water and the distortion of water structure are further mechanisms of the CAF solubility enhancement. It is likely that the variety of mechanisms for hydrotropism shown in this system can be found for other hydrotropes, and NMR spectroscopy and neutron total scattering can be used as complementary techniques to generate a holistic picture of hydrotropic solutions.


Asunto(s)
Cafeína , Benzoato de Sodio , Cafeína/química , Espectroscopía de Resonancia Magnética , Benzoatos , Agua , Neutrones
20.
Phytother Res ; 37(12): 5558-5598, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37679309

RESUMEN

Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Cafeína/farmacología , Cafeína/química , Hipertensión/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA