Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37139703

RESUMEN

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica , Ratones , Humanos , Animales , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Células HEK293 , Mutación/genética , Activación del Canal Iónico , Citosol/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614292

RESUMEN

The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.


Asunto(s)
Mexiletine , Miotonía , Canal de Sodio Activado por Voltaje NAV1.4 , Bloqueadores del Canal de Sodio Activado por Voltaje , Humanos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Miotonía/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Síndrome , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
3.
Dis Markers ; 2022: 3736104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401884

RESUMEN

Background: Liver hepatocellular carcinoma (LIHC) is the second leading cause of tumor-related death in the world. Carvacrol was also found to inhibit multiple cancer types. Here, we proposed that Carvacrol inhibited LIHC. Methods: We used MTT assay to determine the inhibition of Carvacrol on LIHC cells. BATMAN-TCM was used to predict targets of Carvacrol. These targets were further screened by their survival association and expression in cancer using TCGA data. The bioinformatic screened candidates were further validated in in vitro experiments and clinical samples. Finally, docking models of the interaction of Carvacrol and target protein were conducted. Results: Carvacrol inhibited the viability of LIHC cell lines. 40 target genes of Carvacrol were predicted, 8 of them associated with survival. 4 genes were found differentially expressed in LIHC vs. normal liver. Among these genes, the expression of SLC6A3 and SCN4A was found affected by Carvacrol in LIHC cells, but only SLC6A3 correlated with the viability inhibition of Carvacrol on LIHC cell lines. A docking model of the interaction of Carvacrol and SLC6A3 was established with a good binding affinity. SLC6A3 knockdown and expression revealed that SLC6A3 promoted the viability of LIHC cells. Conclusion: Carvacrol inhibited the viability of LIHC cells by downregulating SLC6A3.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cimenos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
4.
Biochem Soc Trans ; 49(5): 1941-1961, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643236

RESUMEN

Voltage-dependent Na+ channel activation underlies action potential generation fundamental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity, surveying their structural, genetic and cellular and functional implications, translating these to their possible clinical importance. In addition to phosphorylation sites, both Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the Ca2+-sensor calmodulin in their inactivating III-IV linker and C-terminal domains (CTD), where mutations are associated with a range of skeletal and cardiac muscle diseases. We summarize in vitro cell-attached patch clamp studies reporting correspondingly diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax) and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regulated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal and cardiac myocytes. They correspondingly reduced action potential upstroke rates and conduction velocities, causing pro-arrhythmic effects in intact perfused hearts. Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic polymorphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-arrhythmic phenotypes following catecholaminergic challenge. These accompanied reductions in action potential conduction velocities. The latter were reversed by flecainide at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally explore the relevance of these mechanisms in further genetic paradigms for commoner metabolic and structural cardiac disease.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Flecainida/uso terapéutico , Humanos , Ratones , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Resultado del Tratamiento , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
5.
ChemMedChem ; 16(23): 3588-3599, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34519427

RESUMEN

Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.


Asunto(s)
Butilaminas/farmacología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Éteres Fenílicos/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Antioxidantes/síntesis química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/toxicidad , Butilaminas/síntesis química , Butilaminas/metabolismo , Butilaminas/toxicidad , Células HEK293 , Células HeLa , Humanos , Mexiletine/farmacología , Simulación del Acoplamiento Molecular , Éteres Fenílicos/síntesis química , Éteres Fenílicos/metabolismo , Éteres Fenílicos/toxicidad , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad
6.
J Gen Physiol ; 153(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33836525

RESUMEN

Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD's localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.


Asunto(s)
Cannabidiol , Canalopatías , Canal de Sodio Activado por Voltaje NAV1.4 , Canales de Sodio Activados por Voltaje , Cannabidiol/farmacología , Elasticidad , Humanos , Músculo Esquelético , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
7.
Cells ; 10(2)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670307

RESUMEN

Non-dystrophic myotonias have been linked to loss-of-function mutations in the ClC-1 chloride channel or gain-of-function mutations in the Nav1.4 sodium channel. Here, we describe a family with members diagnosed with Thomsen's disease. One novel mutation (p.W322*) in CLCN1 and one undescribed mutation (p.R1463H) in SCN4A are segregating in this family. The CLCN1-p.W322* was also found in an unrelated family, in compound heterozygosity with the known CLCN1-p.G355R mutation. One reported mutation, SCN4A-p.T1313M, was found in a third family. Both CLCN1 mutations exhibited loss-of-function: CLCN1-p.W322* probably leads to a non-viable truncated protein; for CLCN1-p.G355R, we predict structural damage, triggering important steric clashes. The SCN4A-p.R1463H produced a positive shift in the steady-state inactivation increasing window currents and a faster recovery from inactivation. These gain-of-function effects are probably due to a disruption of interaction R1463-D1356, which destabilizes the voltage sensor domain (VSD) IV and increases the flexibility of the S4-S5 linker. Finally, modelling suggested that the p.T1313M induces a strong decrease in protein flexibility on the III-IV linker. This study demonstrates that CLCN1-p.W322* and SCN4A-p.R1463H mutations can act alone or in combination as inducers of myotonia. Their co-segregation highlights the necessity for carrying out deep genetic analysis to provide accurate genetic counseling and management of patients.


Asunto(s)
Canales de Cloruro/genética , Mutación/genética , Miotonía Congénita/genética , Miotonía/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Miotonía Congénita/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Linaje
8.
Sci Rep ; 11(1): 2846, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531589

RESUMEN

Skeletal muscle Na+ channels possess Ca2+- and calmodulin-binding sites implicated in Nav1.4 current (INa) downregulation following ryanodine receptor (RyR1) activation produced by exchange protein directly activated by cyclic AMP or caffeine challenge, effects abrogated by the RyR1-antagonist dantrolene which itself increased INa. These findings were attributed to actions of consequently altered cytosolic Ca2+, [Ca2+]i, on Nav1.4. We extend the latter hypothesis employing cyclopiazonic acid (CPA) challenge, which similarly increases [Ca2+]i, but through contrastingly inhibiting sarcoplasmic reticular (SR) Ca2+-ATPase. Loose patch clamping determined Na+ current (INa) families in intact native murine gastrocnemius skeletal myocytes, minimising artefactual [Ca2+]i perturbations. A bespoke flow system permitted continuous INa comparisons through graded depolarizing steps in identical stable membrane patches before and following solution change. In contrast to the previous studies modifying RyR1 activity, and imposing control solution changes, CPA (0.1 and 1 µM) produced persistent increases in INa within 1-4 min of introduction. CPA pre-treatment additionally abrogated previously reported reductions in INa produced by 0.5 mM caffeine. Plots of peak current against voltage excursion demonstrated that 1 µM CPA increased maximum INa by ~ 30%. It only slightly decreased half-maximal activating voltages (V0.5) and steepness factors (k), by 2 mV and 0.7, in contrast to the V0.5 and k shifts reported with direct RyR1 modification. These paradoxical findings complement previously reported downregulatory effects on Nav1.4 of RyR1-agonist mediated increases in bulk cytosolic [Ca2+]. They implicate possible local tubule-sarcoplasmic triadic domains containing reduced [Ca2+]TSR in the observed upregulation of Nav1.4 function following CPA-induced SR Ca2+ depletion.


Asunto(s)
Músculo Esquelético/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Cafeína/farmacología , Agonistas de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Indoles/farmacología , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Técnicas de Placa-Clamp , Cultivo Primario de Células , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Sodio/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
Phys Chem Chem Phys ; 23(5): 3552-3564, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33514952

RESUMEN

The activity of voltage-gated ion channels can be controlled by the binding of photoswitches inside their internal cavity and subsequent light irradiation. We investigated the binding of azobenzene and p-diaminoazobenzene to the human Nav1.4 channel in the inactivated state by means of Gaussian accelerated molecular dynamics simulations and free-energy computations. Three stable binding pockets were identified for each of the two photoswitches. In all the cases, the binding is controlled by the balance between the favorable hydrophobic interactions of the ligands with the nonpolar residues of the protein and the unfavorable polar solvation energy. In addition, electrostatic interactions between the ligand and the polar aminoacids are also relevant for p-diaminoazobenzene due to the presence of the amino groups on the benzene moieties. These groups participate in hydrogen bonding in the most favorable binding pocket and in long-range electrostatic interactions in the other pockets. The thermodinamically preferred binding sites found for both photoswitches are close to the selectivity filter of the channel. Therefore, it is very likely that the binding of these ligands will induce alterations in the ion conduction through the channel.


Asunto(s)
Compuestos Azo/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , p-Aminoazobenceno/análogos & derivados , Compuestos Azo/química , Sitios de Unión , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Canal de Sodio Activado por Voltaje NAV1.4/química , Unión Proteica , Electricidad Estática , Termodinámica , p-Aminoazobenceno/química , p-Aminoazobenceno/metabolismo
10.
J Med Chem ; 63(21): 12773-12785, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33078946

RESUMEN

Voltage-gated sodium (NaV) channels are pore-forming transmembrane proteins that play essential roles in excitable cells, and they are key targets for antiepileptic, antiarrhythmic, and analgesic drugs. We implemented a heterobivalent design strategy to modulate the potency, selectivity, and binding kinetics of NaV channel ligands. We conjugated µ-conotoxin KIIIA, which occludes the pore of the NaV channels, to an analogue of huwentoxin-IV, a spider-venom peptide that allosterically modulates channel gating. Bioorthogonal hydrazide and copper-assisted azide-alkyne cycloaddition conjugation chemistries were employed to generate heterobivalent ligands using polyethylene glycol linkers spanning 40-120 Å. The ligand with an 80 Å linker had the most pronounced bivalent effects, with a significantly slower dissociation rate and 4-24-fold higher potency compared to those of the monovalent peptides for the human NaV1.4 channel. This study highlights the power of heterobivalent ligand design and expands the repertoire of pharmacological probes for exploring the function of NaV channels.


Asunto(s)
Ligandos , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Conotoxinas/química , Conotoxinas/metabolismo , Reacción de Cicloadición , Humanos , Concentración 50 Inhibidora , Cinética , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Técnicas de Placa-Clamp , Polietilenos/química , Venenos de Araña/síntesis química , Venenos de Araña/química , Venenos de Araña/metabolismo , Arañas/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
11.
J Biochem ; 168(6): 633-641, 2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-32730584

RESUMEN

Anti-tumour-analgesic peptide (AGAP), one scorpion toxin purified from Buthus martensii Karsch, was known as its analgesic and anti-tumour activities. Trp38, a conserved aromatic residue of AGAP, might play important roles in its interaction with sodium channels. In this study, a mutant W38F was generated and effects of W38F were examined on hNav1.4, hNav1.5 and hNav1.7 by using whole-cell patch-clamp, which were closely associated to the biotoxicity of skeletal and cardiac muscles and pain signalling. The data showed that W38F decreased the inhibition effects of peak currents of hNav1.7, hNav1.4 and hNav1.5 compared with AGAP, notably, W38F reduced the analgesic activity compared with AGAP. The results suggested that Trp38 be a crucial amino acid involved in the interaction with these three sodium channels. The decreased analgesic activity of W38F might result from its much less inhibition of hNav1.7. These findings provided more information about the relationship between structure and function of AGAP and may facilitate the modification of other scorpion toxins with pharmacological effects.


Asunto(s)
Analgésicos/farmacología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Venenos de Escorpión/farmacología , Triptófano/metabolismo , Animales , Femenino , Humanos , Activación del Canal Iónico , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Fragmentos de Péptidos/genética , Venenos de Escorpión/genética , Triptófano/genética
12.
PLoS One ; 15(5): e0233017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407401

RESUMEN

Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.


Asunto(s)
Canales de Cloruro/genética , Parálisis Periódica Hipopotasémica/complicaciones , Parálisis Periódica Hipopotasémica/genética , Miotonía Congénita/complicaciones , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , China , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Consanguinidad , Secuencia Conservada , Diagnóstico Diferencial , Femenino , Células HEK293 , Humanos , Parálisis Periódica Hipopotasémica/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Miotonía Congénita/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Linaje , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuenciación del Exoma , Adulto Joven
13.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276507

RESUMEN

Myotonia congenita (MC) is a rare disorder characterized by stiffness and weakness of the limb and trunk muscles. Mutations in the SCN4A gene encoding the alpha-subunit of the voltage-gated sodium channel Nav1.4 have been reported to be responsible for sodium channel myotonia (SCM). The Nav1.4 channel is expressed in skeletal muscles, and its related channelopathies affect skeletal muscle excitability, which can manifest as SCM, paramyotonia and periodic paralysis. In this study, the missense mutation p.V445M was identified in two individual families with MC. To determine the functional consequences of having a mutated Nav1.4 channel, whole-cell patch-clamp recording of transfected Chinese hamster ovary cells was performed. Evaluation of the transient Na+ current found that a hyperpolarizing shift occurs at both the activation and inactivation curves with an increase of the window currents in the mutant channels. The Nav1.4 channel's co-expression with the Navß4 peptide can generate resurgent Na+ currents at repolarization following a depolarization. The magnitude of the resurgent currents is higher in the mutant than in the wild-type (WT) channel. Although the decay kinetics are comparable between the mutant and WT channels, the time to the peak of resurgent Na+ currents in the mutant channel is significantly protracted compared with that in the WT channel. These findings suggest that the p.V445M mutation in the Nav1.4 channel results in an increase of both sustained and resurgent Na+ currents, which may contribute to hyperexcitability with repetitive firing and is likely to facilitate recurrent myotonia in SCM patients.


Asunto(s)
Mutación Missense , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/fisiología , Secuencia de Aminoácidos , Animales , Pueblo Asiatico , Células CHO , Canalopatías/genética , Canalopatías/metabolismo , Canalopatías/fisiopatología , Cricetulus , Femenino , Humanos , Masculino , Miotonía Congénita/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Técnicas de Placa-Clamp , Linaje
14.
Biochim Biophys Acta Biomembr ; 1862(2): 183129, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31738900

RESUMEN

Slow inactivation in voltage-gated Na+ channels (Navs) plays an important physiological role in excitable tissues (muscle, heart, nerves) and mutations that disrupt Nav slow inactivation can result in pathophysiologies (myotonia, arrhythmias, epilepsy). While the molecular mechanisms responsible for slow inactivation remain elusive, previous studies have suggested a role for the pore-lining D1-S6 helix. The goals of this research were to determine if (1) cysteine substitutions in D1-S6 affect gating kinetics and (2) methanethiosulfonate ethylammonium (MTSEA) accessibility changes in different kinetic states. Site-directed mutagenesis in the human skeletal muscle isoform hNav1.4 was used to substitute cysteine for eleven amino acids in D1-S6 from L433 to L443. Mutants were expressed in HEK cells and recorded from with whole-cell patch clamp. All mutations affected one or more baseline kinetics of the sodium channel, including activation, fast inactivation, and slow inactivation. Substitution of cysteine (for nonpolar residues) adjacent to polar residues destabilized slow inactivation in G434C, F436C, I439C, and L441C. Cysteine substitution without adjacent polar residues enhanced slow inactivation in L438C and N440C, and disrupted possible H-bonds involving Y437:D4 S4-S5 and N440:D4-S6. MTSEA exposure in closed, fast-inactivated, or slow-inactivated states in most mutants had little-to-no effect. In I439C, MTSEA application in closed, fast-inactivated, and slow-inactivated states produced irreversible reduction in current, suggesting I439C accessibility to MTSEA in all three kinetic states. D1-S6 is important for Nav gating kinetics, stability of slow-inactivated state, structural contacts, and state-dependent positioning. However, prominent reconfiguration of D1-S6 may not occur in slow inactivation.


Asunto(s)
Sustitución de Aminoácidos , Cisteína/genética , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.4/química , Cisteína/química , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/química , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Unión Proteica , Dominios Proteicos
15.
Biomed Pharmacother ; 120: 109352, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31586905

RESUMEN

Inflammatory monocyte and macrophage subset accumulation during the inflammatory response that drives atherosclerosis can exacerbate the extent of atherosclerosis. It has been demonstrated that voltage-gated sodium channels (VGSCs) can regulate cell bioactivities in monocytes/macrophages. We hypothesized that blockade of mononuclear phagocyte VGSCs was atheroprotective through monocyte/macrophage subset modulation and macrophage proliferation suppression in atherosclerotic lesions. In this experimental study, when VGSCs were knocked down with RNA interference plasmid transfection in mouse peripheral blood monocytes and monocyte-macrophage lineage RAW264.7 cells in vitro, the biological characteristics of proliferation, phagocytosis, and migration in RAW264.7 cells declined. In addition, suppression of LPS-induced M1 polarization and facilitation of IL-4-induced M2 polarization were also observed. In an in vivo study, ApoE knockout (ApoE-/-) mice were fed a standard chow diet (CD) or a western diet (WD). After feeding with phenytoin (PHT), no significant differences were detected in plasma lipids, and the anti-inflammatory phenotypes of both monocytes and macrophages were elevated and proinflammatory phenotypes declined. The local proliferation of macrophages was also distinctly suppressed, along with a significant reduction in atheromatous plaques. In conclusion, blockade of VGSCs in the mononuclear phagocyte system reduced atherosclerotic lesions, which may occur through altering monocyte/macrophage subsets and suppressing macrophage proliferation in atherosclerotic plaques. Blockage of VGSCs may play an important role in cardiovascular protection.


Asunto(s)
Aterosclerosis/prevención & control , Activación de Macrófagos , Macrófagos/metabolismo , Monocitos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Monocitos/patología , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.9/genética , Fagocitosis , Placa Aterosclerótica , Células RAW 264.7 , Interferencia de ARN , Transducción de Señal
16.
Comput Biol Chem ; 83: 107132, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31563636

RESUMEN

Here, we focused on exploring the selectivity mechanism against Nav1.7 over Nav1.4 due to different binding modes of two selected inhibitors. By the superposition of Nav1.7 and Nav1.4 proteins, we selected the most homologous chain of Nav1.7 with Nav1.4, defining the active site of Nav1.4-VSD4 based on the aryl sulfonamide binding site of Nav1.7-VSD4. Comparison of the conformations exhibited by Tyr1386 (Nav1.4) and Tyr1537 (Nav1.7) suggested that the steric hindrance caused by Tyr1386 owned primary influence on inhibition selectivity, which was further verified through molecular docking and MD simulation of two representative inhibitors. Our finding would be helpful for discovery of selective Nav1.7 inhibitors over Nav1.4.


Asunto(s)
Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Relación Estructura-Actividad , Sulfonamidas/química , Termodinámica
17.
Nat Commun ; 10(1): 1514, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944319

RESUMEN

Skeletal muscle voltage-gated Na+ channel (NaV1.4) activity is subject to calmodulin (CaM) mediated Ca2+-dependent inactivation; no such inactivation is observed in the cardiac Na+ channel (NaV1.5). Taken together, the crystal structures of the NaV1.4 C-terminal domain relevant complexes and thermodynamic binding data presented here provide a rationale for this isoform difference. A Ca2+-dependent CaM N-lobe binding site previously identified in NaV1.5 is not present in NaV1.4 allowing the N-lobe to signal other regions of the NaV1.4 channel. Consistent with this mechanism, removing this binding site in NaV1.5 unveils robust Ca2+-dependent inactivation in the previously insensitive isoform. These findings suggest that Ca2+-dependent inactivation is effected by CaM's N-lobe binding outside the NaV C-terminal while CaM's C-lobe remains bound to the NaV C-terminal. As the N-lobe binding motif of NaV1.5 is a mutational hotspot for inherited arrhythmias, the contributions of mutation-induced changes in CDI to arrhythmia generation is an intriguing possibility.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sitios de Unión , Calcio/química , Calmodulina/química , Calmodulina/genética , Humanos , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas
18.
Dokl Biochem Biophys ; 484(1): 9-12, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31012002

RESUMEN

An effective bacterial system for the production of ß-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of ß-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.


Asunto(s)
Venenos de Escorpión , Bloqueadores de los Canales de Sodio , Animales , Humanos , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Venenos de Escorpión/biosíntesis , Venenos de Escorpión/química , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Xenopus laevis
19.
Neurology ; 92(13): e1405-e1415, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30824560

RESUMEN

OBJECTIVE: To identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, SCN4A. METHODS: A combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and Xenopus oocytes. RESULTS: Missense mutations of the same residue in the skeletal muscle sodium channel, R1460 of NaV1.4, were identified in a family and a single patient of Finnish origin (p.R1460Q) and a proband in the United States (p.R1460W). Congenital hypotonia, breathing difficulties, bulbar weakness, and fatigability had recessive inheritance (homozygous p.R1460W or compound heterozygous p.R1460Q and p.R1059X), whereas carriers were either asymptomatic (p.R1460W) or had myotonia (p.R1460Q). Sodium currents conducted by mutant channels showed unusual mixed defects with both loss-of-function (reduced amplitude, hyperpolarized shift of inactivation) and gain-of-function (slower entry and faster recovery from inactivation) changes. CONCLUSIONS: Novel mutations in families with myasthenic congenital myopathy have been identified at p.R1460 of the sodium channel. Recessive inheritance, with experimentally established loss-of-function, is a consistent feature of sodium channel based myasthenia, whereas the mixed gain of function for p.R1460 may also cause susceptibility to myotonia.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Animales , Electromiografía , Femenino , Finlandia , Humanos , Laringismo/genética , Laringismo/fisiopatología , Mutación con Pérdida de Función , Masculino , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Músculo Esquelético/patología , Mutación Missense , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/fisiopatología , Miotonía/genética , Miotonía/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Oocitos , Técnicas de Placa-Clamp , Linaje , Secuenciación del Exoma , Xenopus
20.
Sci Rep ; 9(1): 1927, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760734

RESUMEN

We investigated effects of pharmacological triggering of exchange protein directly activated by cyclic-3',5'-adenosine monophosphate (Epac) on Nav1.4 currents from intact murine (C67BL6) skeletal muscle fibres for the first time. This employed a loose patch clamp technique which examined ionic currents in response to superimposed 10-ms V1 steps to varying degrees of depolarisation, followed by V2 steps to a fixed, +100 mV depolarisation relative to resting membrane potential following 40 mV hyperpolarising prepulses of 50 ms duration. The activation and inactivation properties of the resulting Na+ membrane current densities revealed reduced maximum currents and steepnesses in their voltage dependences after addition of the Epac activator 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (1 µM) to the bathing Krebs-Henseleit solutions. Contrastingly, voltages at half-maximal current and timecourses of currents obtained in response to the V1 depolarising steps were unchanged. These effects were abolished by further addition of the RyR-inhibitor dantrolene (10 µM). In contrast, challenge by dantrolene alone left both currents and their parameters intact. These effects of Epac activation in inhibiting skeletal muscle, Nav1.4, currents, complement similar effects previously reported in the homologous Nav1.5 in murine cardiomyocytes. They are discussed in terms of a hypothesis implicating Epac actions in increasing RyR-mediated SR Ca2+ release resulting in a Ca2+-mediated inhibition of Nav1.4. The latter effect may form the basis for Ca2+-dependent Na+ channel dysregulation in SCN4A channelopathies associated with cold- and K+-aggravated myotonias.


Asunto(s)
AMP Cíclico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Sodio/metabolismo , Animales , Transporte Iónico/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/citología , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA