Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Mol Biol Rep ; 51(1): 764, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874740

RESUMEN

BACKGROUND AND AIM: Colorectal cancer (CRC) originates from pre-existing polyps in the colon. The development of different subtypes of CRC is influenced by various genetic and epigenetic characteristics. CpG island methylator phenotype (CIMP) is found in about 15-20% of sporadic CRCs and is associated with hypermethylation of certain gene promoters. This study aims to find prognostic genes and compare their expression and methylation status as potential biomarkers in patients with serrated sessile adenomas/polyps (SSAP) and CRC, in order to evaluate which, one is a better predictor of disease. METHOD: This study employed a multi-phase approach to investigate genes associated with CRC and SSAP. Initially, two gene expression datasets were analyzed using R and Limma package to identify differentially expressed genes (DEGs). Venn diagram analysis further refined the selection, revealing four genes from the Weissenberg panel with significant changes. These genes, underwent thorough in silico evaluations. Once confirmed, they proceeded to wet lab experimentation, focusing on expression and methylation status. This comprehensive methodology ensured a robust examination of the genes involved in CRC and SSAP. RESULT: This study identified cancer-specific genes, with 8,351 and 1,769 genes specifically down-regulated in SSAP and CRC tissues, respectively. The down-regulated genes were associated with cell adhesion, negative regulation of cell proliferation, and drug response. Four highly downregulated genes in the Weissenberg panel, including CACNA1G, IGF2, MLH1, and SOCS1. In vitro analysis showed that they are hypermethylated in both SSAP and CRC samples while their expressions decreased only in CRC samples. CONCLUSION: This suggests that the decrease in gene expression could help determine whether a polyp will become cancerous. Using both methylation status and gene expression status of genes in the Weissenberg panel in prognostic tests may lead to better prognoses for patients.


Asunto(s)
Neoplasias Colorrectales , Islas de CpG , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina , Homólogo 1 de la Proteína MutL , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Metilación de ADN/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Islas de CpG/genética , Femenino , Pólipos del Colon/genética , Pólipos del Colon/metabolismo , Pólipos del Colon/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Masculino , Regulación hacia Abajo/genética , Simulación por Computador , Persona de Mediana Edad , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Regiones Promotoras Genéticas/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Perfilación de la Expresión Génica/métodos , Anciano , Pronóstico
2.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831315

RESUMEN

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Asunto(s)
Canales de Calcio Tipo T , Proteínas Quinasas Dependientes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriales , Transducción de Señal , Ganglio del Trigémino , Familia-src Quinasas , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Familia-src Quinasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglio del Trigémino/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Receptores de Interleucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Interleucinas/metabolismo
3.
Endocr Relat Cancer ; 31(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864697

RESUMEN

Pheochromocytoma (PCC) and abdominal paraganglioma (aPGL) (together abbreviated PPGL) frequently present with an underlying genetic event in a PPGL driver gene, and additional susceptibility genes are anticipated. Here, we re-analyzed whole-exome sequencing data for PCC patients and identified two patients with rare missense variants in the calcium voltage-gated channel subunit 1H gene (CACNA1H). CACNA1H variants were also found in the clinical setting in PCC patients using targeted sequencing and from analysis of The Cancer Genome Atlas database. In total, CACNA1H variants were found in six PCC cases. Three of these were constitutional, and two are known to have functional consequences on hormone production and gene expression in primary aldosteronism and aldosterone-producing adrenocortical adenoma. In general, PPGL exhibited reduced CACNA1H mRNA expression as compared to normal adrenal. Immunohistochemistry showed strong CACNA1H (CaV3.2) staining in adrenal medulla while PPGL typically had weak or negative staining. Reduced CACNA1H gene expression was especially pronounced in PCC compared to aPGL and in PPGL with cluster 2 kinase signaling phenotype. Furthermore, CACNA1H levels correlated with HIF1A and HIF2A. Moreover, TCGA data revealed a correlation between CACNA1H methylation density and gene expression. Expression of rCacna1h in PC12 cells induced differential protein expression profiles, determined by mass spectrometry, as well as a shift in the membrane potential where maximum calcium currents were observed, as determined by electrophysiology. The findings suggest the involvement of CACNA1H/CaV3.2 in pheochromocytoma development and establish a potential link between the etiology of adrenomedullary and adrenocortical tumor development.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Regulación hacia Abajo , Feocromocitoma , Feocromocitoma/genética , Feocromocitoma/metabolismo , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Femenino , Masculino , Animales , Persona de Mediana Edad , Adulto , Ratas , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Células PC12
5.
Biochim Biophys Acta Biomembr ; 1866(6): 184337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763272

RESUMEN

Ca2+ influx through Cav3.3 T-type channel plays crucial roles in neuronal excitability and is subject to regulation by various signaling molecules. However, our understanding of the partners of Cav3.3 and the related regulatory pathways remains largely limited. To address this quest, we employed the rat Cav3.3 C-terminus as bait in yeast-two-hybrid screenings of a cDNA library, identifying rat Gß2 as an interaction partner. Subsequent assays revealed that the interaction of Gß2 subunit was specific to the Cav3.3 C-terminus. Through systematic dissection of the C-terminus, we pinpointed a 22 amino acid sequence (amino acids 1789-1810) as the Gß2 interaction site. Coexpression studies of rat Cav3.3 with various Gßγ compositions were conducted in HEK-293 cells. Patch clamp recordings revealed that coexpression of Gß2γ2 reduced Cav3.3 current density and accelerated inactivation kinetics. Interestingly, the effects were not unique to Gß2γ2, but were mimicked by Gß2 alone as well as other Gßγ dimers, with similar potencies. Deletion of the Gß2 interaction site abolished the effects of Gß2γ2. Importantly, these Gß2 effects were reproduced in human Cav3.3. Overall, our findings provide evidence that Gß(γ) complexes inhibit Cav3.3 channel activity and accelerate the inactivation kinetics through the Gß interaction with the Cav3.3 C-terminus.


Asunto(s)
Canales de Calcio Tipo T , Subunidades beta de la Proteína de Unión al GTP , Animales , Humanos , Ratas , Canales de Calcio Tipo R , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/química , Proteínas de Transporte de Catión , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Células HEK293 , Cinética , Técnicas de Placa-Clamp , Unión Proteica
6.
Mol Biol Rep ; 51(1): 673, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787479

RESUMEN

BACKGROUND: T-type calcium channels, characterized as low-voltage activated (LVA) calcium channels, play crucial physiological roles across a wide range of tissues, including both the neuronal and nonneuronal systems. Using in situ hybridization and RNA interference (RNAi) techniques in vitro, we previously identified the tissue distribution and physiological function of the T-type calcium channel α1 subunit (DdCα1G) in the plant-parasitic nematode Ditylenchus destructor. METHODS AND RESULTS: To further characterize the functional role of DdCα1G, we employed a combination of immunohistochemistry and fungus-mediated RNAi and found that DdCα1G was clearly distributed in stylet-related tissue, oesophageal gland-related tissue, secretory-excretory duct-related tissue and male spicule-related tissue. Silencing DdCα1G led to impairments in the locomotion, feeding, reproductive ability and protein secretion of nematodes. To confirm the defects in behavior, we used phalloidin staining to examine muscle changes in DdCα1G-RNAi nematodes. Our observations demonstrated that defective behaviors are associated with related muscular atrophy. CONCLUSION: Our findings provide a deeper understanding of the physiological functions of T-type calcium channels in plant-parasitic nematodes. The T-type calcium channel can be considered a promising target for sustainable nematode management practices.


Asunto(s)
Actinas , Canales de Calcio Tipo T , Interferencia de ARN , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Actinas/metabolismo , Actinas/genética , Masculino , Hongos/genética , Silenciador del Gen
7.
J Pharmacol Sci ; 155(3): 113-120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797535

RESUMEN

Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S-S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Cav3.2 T-type Ca2+ channels by eliminating Zn2+ bound to the channels, thereby promoting somatic and visceral pain. Cav3.2 is under inhibition by Zn2+ in physiological conditions, so that sulfides function to reboot Cav3.2 from Zn2+ inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Cav3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Cav3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.


Asunto(s)
Canales de Calcio Tipo T , Sulfuros , Canal Catiónico TRPA1 , Sulfuros/farmacología , Canal Catiónico TRPA1/metabolismo , Humanos , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/fisiología , Animales , Zinc/metabolismo , Dolor/metabolismo , Dolor/tratamiento farmacológico , Nociceptores/metabolismo , Nociceptores/efectos de los fármacos
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731963

RESUMEN

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Asunto(s)
Canales de Calcio Tipo T , Modelos Animales de Enfermedad , Hiperalgesia , Dolor Postoperatorio , Venenos de Escorpión , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Ratones , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Calcio/metabolismo , Masculino , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química
9.
Int Immunopharmacol ; 133: 112031, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631219

RESUMEN

BACKGROUND: Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS: The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1ß were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS: Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1ß were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1ß compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1ß expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS: Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1ß release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.


Asunto(s)
Canales de Calcio Tipo T , MicroARNs , Enfermedades Neuroinflamatorias , Daño por Reperfusión , Isquemia de la Médula Espinal , Animales , Masculino , Ratas , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Isquemia de la Médula Espinal/metabolismo , Isquemia de la Médula Espinal/genética
10.
Cell Res ; 34(6): 440-450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605177

RESUMEN

The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Microscopía por Crioelectrón , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Humanos , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Sitios de Unión , Unión Proteica , Modelos Moleculares , Células HEK293
11.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445814

RESUMEN

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Endotelio Vascular , Nifedipino , Nitrofenoles , Humanos , Masculino , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/efectos de los fármacos , Anciano , Bloqueadores de los Canales de Calcio/farmacología , Nifedipino/farmacología , Proyectos Piloto , Método Doble Ciego , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Dihidropiridinas/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Compuestos Organofosforados/farmacología , Acetilcolina/farmacología , Pierna/irrigación sanguínea , Nitroprusiato/farmacología , Persona de Mediana Edad
12.
J Invest Dermatol ; 144(3): 612-620.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863387

RESUMEN

Voltage-gated calcium channels regulate neuronal excitability. The Cav3.2 isoform of the T-type voltage-activated calcium channel is expressed in sensory neurons and is implicated in pain transmission. However, its role in itch remains unclear. In this study, we demonstrated that Cav3.2 is expressed by mechanosensory and peptidergic subsets of mouse dorsal root ganglion neurons and colocalized with TRPV1 and receptors for type 2 cytokines. Cav3.2-positive neurons innervate human skin. A deficiency of Cav3.2 reduces histamine, IL-4/IL-13, and TSLP-induced itch in mice. Cav3.2 channels were upregulated in the dorsal root ganglia of an atopic dermatitis (AD)-like mouse model and mediated neuronal excitability. Genetic knockout of Cav3.2 or T-type calcium channel blocker mibefradil treatment reduced spontaneous and mechanically induced scratching behaviors and skin inflammation in an AD-like mouse model. Substance P and vasoactive intestinal polypeptide levels were increased in the trigeminal ganglia from AD-like mouse model, and genetic ablation or pharmacological inhibition of Cav3.2 reduced their gene expression. Cav3.2 knockout also attenuated the pathologic changes in ex vivo skin explants cocultured with trigeminal ganglia neurons from AD-induced mice. Our study identifies the role of Cav3.2 in both histaminergic and nonhistaminergic acute itch. Cav3.2 channel also contributes to AD-related chronic itch and neuroinflammation.


Asunto(s)
Canales de Calcio Tipo T , Dermatitis Atópica , Ratones , Humanos , Animales , Dermatitis Atópica/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Prurito/metabolismo , Inflamación/metabolismo , Células Receptoras Sensoriales/metabolismo , Interleucina-13/metabolismo , Ganglios Espinales/metabolismo
13.
Pflugers Arch ; 476(2): 163-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036777

RESUMEN

T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.


Asunto(s)
Canales de Calcio Tipo T , Calcio , Calcio/metabolismo , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T/metabolismo , Neuronas/metabolismo
14.
Sci Rep ; 13(1): 20407, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989780

RESUMEN

The arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca2+] is a key determinant of constriction, tied to L-type (CaV1.2) Ca2+ channels. While important, other Ca2+ channels, particularly T-type could contribute to pressure regulation within defined voltage ranges. This study examined the role of one T-type Ca2+ channel (CaV3.1) using C57BL/6 wild type and CaV3.1-/- mice. Patch-clamp electrophysiology, pressure myography, blood pressure and Ca2+ imaging defined the CaV3.1-/- phenotype relative to C57BL/6. CaV3.1-/- mice had absent CaV3.1 expression and whole-cell current, coinciding with lower blood pressure and reduced mesenteric artery myogenic tone, particularly at lower pressures (20-60 mmHg) where membrane potential is hyperpolarized. This reduction coincided with diminished Ca2+ wave generation, asynchronous events of Ca2+ release from the sarcoplasmic reticulum, insensitive to L-type Ca2+ channel blockade (Nifedipine, 0.3 µM). Proximity ligation assay (PLA) confirmed IP3R1/CaV3.1 close physical association. IP3R blockade (2-APB, 50 µM or xestospongin C, 3 µM) in nifedipine-treated C57BL/6 arteries rendered a CaV3.1-/- contractile phenotype. Findings indicate that Ca2+ influx through CaV3.1 contributes to myogenic tone at hyperpolarized voltages through Ca2+-induced Ca2+ release tied to the sarcoplasmic reticulum. This study helps establish CaV3.1 as a potential therapeutic target to control blood pressure.


Asunto(s)
Canales de Calcio Tipo T , Nifedipino , Ratones , Animales , Nifedipino/farmacología , Nifedipino/metabolismo , Señalización del Calcio , Vasoconstricción , Ratones Endogámicos C57BL , Arterias Mesentéricas/metabolismo , Niacinamida/metabolismo , Músculo Liso Vascular/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo
15.
Mol Brain ; 16(1): 60, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464359

RESUMEN

The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.


Asunto(s)
Analgesia , Canales de Calcio Tipo T , Ratones , Masculino , Animales , Dolor , Hiperalgesia/complicaciones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Canales de Calcio Tipo T/metabolismo
16.
Mol Pharmacol ; 104(4): 144-153, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399325

RESUMEN

Englerin A (EA) is a potent agonist of tetrameric transient receptor potential canonical (TRPC) ion channels containing TRPC4 and TRPC5 subunits. TRPC proteins form cation channels that are activated by plasma membrane receptors. They convert extracellular signals such as angiotensin II into cellular responses, whereupon Na+ and Ca2+ influx and depolarization of the plasma membrane occur. Via depolarization, voltage-gated Ca2+ (CaV) channels can be activated, further increasing Ca2+ influx. We investigated the extent to which EA also affects the functions of CaV channels using the high-voltage-activated L-type Ca2+ channel CaV1.2 and the low-voltage-activated T-type Ca2+ channels CaV3.1, CaV3.2, and CaV3.3. After expression of cDNAs in human embryonic kidney (HEK293) cells, EA inhibited currents through all T-type channels at half-maximal inhibitory concentrations (IC50) of 7.5 to 10.3 µM. In zona glomerulosa cells of the adrenal gland, angiotensin II-induced elevation of cytoplasmic Ca2+ concentration leads to aldosterone release. We identified transcripts of low- and high-voltage-activated CaV channels and of TRPC1 and TRPC5 in the human adrenocortical (HAC15) zona glomerulosa cell line. Although no EA-induced TRPC activity was measurable, Ca2+ channel blockers distinguished T- and L-type Ca2+ currents. EA blocked 60% of the CaV current in HAC15 cells and T- and L-type channels analyzed at -30 mV and 10 mV were inhibited with IC50 values of 2.3 and 2.6 µM, respectively. Although the T-type blocker Z944 reduced basal and angiotensin II-induced 24-hour aldosterone release, EA was not effective. In summary, we show here that EA blocks CaV1.2 and T-type CaV channels at low-micromolar concentrations. SIGNIFICANCE STATEMENT: In this study we showed that englerin A (EA), a potent agonist of tetrameric transient receptor potential canonical (TRPC)4- or TRPC5-containing channels and currently under investigation to treat certain types of cancer, also inhibits the L-type voltage-gated Ca2+ (CaV) channel CaV1.2 and the T-type CaV channels CaV3.1, CaV3.2, and CaV3.3 channels at low micromolar concentrations.


Asunto(s)
Canales de Calcio Tipo T , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Calcio Tipo T/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Aldosterona/farmacología , Células HEK293 , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo
17.
Handb Exp Pharmacol ; 279: 249-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37311830

RESUMEN

Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.


Asunto(s)
Canales de Calcio Tipo T , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Hiperaldosteronismo/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Hipertensión/genética , Señalización del Calcio , Mutación
18.
Neurobiol Dis ; 184: 106217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391087

RESUMEN

RATIONALE: Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS: To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS: GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION: The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.


Asunto(s)
Canales de Calcio Tipo T , Epilepsia Tipo Ausencia , Animales , Ratas , Canales de Calcio Tipo T/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Mutación/genética , Ratas Wistar , Convulsiones/genética
19.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37193665

RESUMEN

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary ß-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC). Our findings indicate that ZnT1 increases TTCC activity by enhancing the trafficking of the channel to the plasma membrane. LTCC and TTCC are co-expressed in many tissues and have different functions in a variety of tissues. In the current work, we investigated the effect of the voltage-gated calcium channel (VGCC) ß-subunit and ZnT1 on the crosstalk between LTCC and TTCC and their functions. Our results indicate that the ß-subunit inhibits the ZnT1-induced augmentation of TTCC function. This inhibition correlates with the VGCC ß-subunit-dependent reduction in ZnT1-induced activation of Ras-ERK signaling. The effect of ZnT1 is specific, as the presence of the ß-subunit did not change the effect of endothelin-1 (ET-1) on TTCC surface expression. These findings document a novel regulatory function of ZnT1 serving as a mediator in the crosstalk between TTCC and LTCC. Overall, we demonstrate that ZnT1 binds and regulates the activity of the ß-subunit of VGCC and Raf-1 kinase and modulates surface expression of the LTCC and TTCC catalytic subunits, consequently modulating the activity of these channels.


Asunto(s)
Canales de Calcio Tipo L , Canales de Calcio Tipo T , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Xenopus
20.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37116219

RESUMEN

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia , Femenino , Ratones , Animales , Canales de Calcio Tipo T/metabolismo , Simulación del Acoplamiento Molecular , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonoles , Ratones Noqueados , Proteasas Ubiquitina-Específicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA