Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.166
Filtrar
1.
Biol Pharm Bull ; 47(1): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171770

RESUMEN

Cl- influx and efflux through Cl- channels play a role in regulating the homeostasis of biological functions. Therefore, the hyperfunction or dysfunction of Cl- channels elicits pathological mechanisms. The Cl- channel superfamily includes voltage-gated Cl- (ClC) channels, Ca2+-activated Cl- channels (ClCa; TMEM16A/TMEM16B), cystic fibrosis transmembrane conductance regulator channels, and ligand-gated Cl- channels. These channels are ubiquitously expressed to regulate ion homeostasis, muscle tonus, membrane excitability, cell volume, survival, neurotransmission, and transepithelial transport. The activation or inhibition of Cl- channels changes the membrane potential, thereby affecting cytosolic Ca2+ signals. An elevation in cytosolic [Ca2+] triggers physiological and pathological responses in most cells. However, the roles of Cl- channels have not yet been examined as extensively as cation (Na+, Ca2+, and K+) channels. We recently reported the functional expression of: (i) TMEM16A/ClCa channels in portal vein and pulmonary arterial smooth muscle cells (PASMC), pinealocytes, and brain capillary endothelial cells; (ii) TMEM16B/ClCa channels in pinealocytes; (iii) ClC-3 channels in PASMC and chondrocytes; and (iv) ClC-7 channels in chondrocytes. We also showed that the down-regulation of TMEM16A and ClC-7 channel expression was associated with cirrhotic portal hypertension and osteoarthritis, respectively, whereas the enhanced expression of TMEM16A and ClC-3 channels was involved in the pathogenesis of cerebral ischemia and pulmonary arterial hypertension, respectively. Further investigations on the physiological/pathological functions of Cl- channels will provide insights into biological functions and contribute to the screening of novel target(s) of drug discovery for associated diseases.


Asunto(s)
Canales de Cloruro , Células Endoteliales , Células Endoteliales/metabolismo , Canales de Cloruro/fisiología , Potenciales de la Membrana , Encéfalo/metabolismo
2.
J Physiol ; 601(24): 5635-5653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37937509

RESUMEN

ClC-6 and ClC-7 are closely related, intracellular Cl- /H+ antiporters belonging to the CLC family of channels and transporters. They localize to acidic late endosomes and lysosomes and probably function in ionic homeostasis of these contiguous compartments. ClC-7 transport function requires association with the accessory protein Ostm1, whereas ClC-6 transport does not. To elucidate their roles in endo-lysosomes, we measured Cl- - and pH-dependences of over-expressed wild-type ClC-6 and ClC-7, as well as disease-associated mutants, using high-resolution recording protocols. Lowering extracellular Cl- (corresponding to luminal Cl- in endo-lysosomes) reduced ClC-6 currents, whereas it increased transport activity of ClC-7/Ostm1. Low extracellular Cl- activated ClC-7/Ostm 1 under acidic extracellular conditions, as well as under conditions of low intracellular chloride. Activation is conserved in ClC-7Y713C , a variant displaying disrupted PI(3,5)P2 inhibition. Detailed biophysical analysis of disease-associated ClC-6 and ClC-7 gain-of-function (GoF) variants, ClC-6Y553C and ClC-7Y713C , and the ClC-7Y577C and ClC-6Y781C correlates, identified additional functional nuances distinguishing ClC-6 and ClC-7. ClC-7Y577C recapitulated GoF produced by ClC-6Y553C . ClC-6Y781C displayed transport activation qualitatively similar to ClC-7Y713C , although current density did not differ from that of wild-type ClC-6. Finally, rClC-7R760Q , homologous to hClC-7R762Q , an osteopetrosis variant with fast gating kinetics, appeared indifferent to extracellular Cl- , identifying altered Cl- sensitivity as a plausible mechanism underlying disease. Collectively, the present studies underscore the distinct roles of ClC-6 and ClC-7 within the context of their respective localization to late endosomes and lysosomes. In particular, we suggest the atypical inhibition of ClC-7 by luminal Cl- serves to limit excessive intraluminal Cl- accumulation. KEY POINTS: ClC-6 and ClC-7 are late endosomal and lysosomal 2 Cl- /1 H+ exchangers, respectively. When targeted to the plasma membrane, both activate slowly at positive voltages. ClC-6 activity is decreased in low extracellular (i.e. luminal) chloride, whereas ClC-7 is activated by low luminal chloride, even at acidic pH. The functional gain-of-function phenotypes of the ClC-6 and ClC-7 disease mutations ClC-6Y553C and ClC-7Y715C are maintained when introduced in their respective homologues, ClC-7Y577C and ClC-6Y781C , with all mutations retaining chloride dependence of the respective wild type (WT). An osteopetrosis mutation of ClC-7 displaying fast gating kinetics (R762Q) was less sensitive to extracellular chloride compared to WT. The opposing substrate dependences of ClC-6 and ClC-7 Cl- / H+ exchangers point to non-overlapping physiological functions, leading us to propose that inhibition of ClC-7 by luminal chloride and protons serves to prevent osmotic stress imposed by hyper-accumulation of chloride.


Asunto(s)
Canales de Cloruro , Cloruros , Osteopetrosis , Humanos , Canales de Cloruro/fisiología , Cloruros/metabolismo , Homeostasis , Lisosomas/metabolismo , Osteopetrosis/metabolismo , Protones
3.
Alcohol Clin Exp Res ; 46(1): 29-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839533

RESUMEN

BACKGROUND: Chloride intracellular channel 4 (CLIC4) is a multifunctional metamorphic protein for which a growing body of evidence supports a major role in the brain's molecular and behavioral responses to ethanol (EtOH). Although key to understanding the functional biology underlying this role, little is known about the cellular and subcellular expression patterns of CLIC4 in brain and how they are affected by EtOH. METHODS: We used qRT-PCR to assess Clic4 mRNA expression in the medial prefrontal cortex (mPFC) of C57BL/6J mice in the absence and presence of acute EtOH exposure. Two complementary immunohistochemical techniques were employed to assess the subcellular localization of the CLIC4 protein and its pattern of expression across brain cell types in the mPFC in the absence and presence of acute EtOH. RESULTS: Through immunohistochemical and stereological techniques, we show that CLIC4 protein is robustly expressed by oligodendrocytes (most abundant), microglia, and astrocytes, with minimal expression in neurons. Following acute EtOH exposure, we observed a rapid increase in Clic4 mRNA expression in female but not male mice and an overall increase in the number of oligodendrocytes and astrocytes expressing the CLIC4 protein. CONCLUSIONS: These findings suggest that Clic4 functions as an early response gene for acute EtOH in brain, which likely underlies its ability to modulate EtOH behavior. Our results also suggest that the role of CLIC4 in the brain's response to EtOH is mediated through oligodendrocytes.


Asunto(s)
Canales de Cloruro/genética , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Mitocondriales/genética , Corteza Prefrontal/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Astrocitos/metabolismo , Astrocitos/ultraestructura , Conducta Animal/efectos de los fármacos , Canales de Cloruro/análisis , Canales de Cloruro/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/fisiología , Oligodendroglía/metabolismo , Corteza Prefrontal/química , Corteza Prefrontal/efectos de los fármacos , ARN Mensajero/análisis , Caracteres Sexuales
4.
Yakugaku Zasshi ; 141(11): 1217-1222, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34719540

RESUMEN

P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.


Asunto(s)
Ácido Gástrico/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/fisiología , Microdominios de Membrana/metabolismo , Transporte Biológico , Glicósidos Cardíacos/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/fisiología , Humanos , Isoenzimas , Neoplasias/metabolismo , Neoplasias/patología , Células Parietales Gástricas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Simportadores/metabolismo , Simportadores/fisiología , Cotransportadores de K Cl
5.
Mol Neurobiol ; 58(11): 5533-5547, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34363182

RESUMEN

Dexmedetomidine (DEX) has multiple biological effects. Here, we investigated the neuroprotective role and molecular mechanism of DEX against lipopolysaccharide (LPS)-induced hippocampal neuronal apoptosis. Sprague Dawley rats were intraperitoneally injected with LPS (10 mg/kg) and/or DEX (30 µg/kg). We found that DEX improved LPS-induced alterations of hippocampal microstructure (necrosis and neuronal loss in the CA1 and CA3 regions) and ultrastructure (mitochondrial damage). DEX also attenuated LPS-induced inflammation and hippocampal apoptosis by inhibiting the increase of interleukin-1ß, interleukin-6, interleukin-18, and tumor necrosis factor-α levels and downregulating the expression of mitochondrial apoptosis pathway-related proteins. Moreover, DEX prevented the LPS-induced activation of the c-Myc/chloride intracellular channel 4 (CLIC4) pathway. DEX inhibited the p38 MAPK pathway, but not JNK and ERK. To further clarify whether DEX alleviated LPS-induced neuronal apoptosis through the p38 MAPK/c-Myc/CLIC4 pathway, we treated PC12 cells with p38 MAPK inhibitor SB203582 (10 µM). DEX had the same effect as SB203582 in reducing the protein and mRNA expression of c-Myc and CLIC4. Furthermore, DEX and SB203582 diminished LPS-induced apoptosis, indicated by decreased Bax and Tom20 fluorescent double-stained cells, reduced annexin V-FITC/PI apoptosis rate, and reduced protein expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3. Taken together, the findings indicate that DEX attenuates LPS-induced hippocampal neuronal apoptosis by regulating the p38 MAPK/c-Myc/CLIC4 signaling pathway. These findings provide new insights into the mechanism of Alzheimer's disease and depression and may help aid in drug development for these diseases.


Asunto(s)
Apoptosis , Hipocampo , Sistema de Señalización de MAP Quinasas , Neuronas , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Canales de Cloruro/fisiología , Citocinas/sangre , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Hipocampo/efectos de los fármacos , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Células PC12 , Proteínas Proto-Oncogénicas c-myc/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley
6.
FASEB J ; 35(7): e21689, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085737

RESUMEN

Knockout of the chloride channel protein 2 (CLC-2; CLCN2) results in fast progressing blindness in mice. Retinal Pigment Epithelium (RPE) and photoreceptors undergo, in parallel, rapid, and profound morphological changes and degeneration. Immunohistochemistry and electron microscopy of the outer retina and electroretinography of the CLC-2 KO mouse demonstrated normal morphology at postnatal day 2, followed by drastic changes in RPE and photoreceptor morphology and loss of vision during the first postnatal month. To investigate whether the RPE or the photoreceptors are the primary cause of the degeneration, we injected lentiviruses carrying HA-tagged CLC-2 with an RPE-specific promotor in the subretinal space of CLC-2-KO mice at the time of eye opening. As expected, CLC-2-HA was expressed exclusively in RPE; strikingly, this procedure rescued the degeneration of both RPE and photoreceptors. Light response in transduced eyes was also recovered. Only a fraction of RPE was transduced with the lentivirus; however, the entire RPE monolayer appears healthy, even the RPE cells not expressing the CLC-2-HA. Surprisingly, in contrast with previous physiological observations that postulate that CLC-2 has a basolateral localization in RPE, our immunofluorescence experiments demonstrated CLC-2 has an apical distribution, facing the subretinal space and the photoreceptor outer segments. Our findings suggest that CLC-2 does not play the postulated role in fluid transport at the basolateral membrane. Rather, they suggest that CLC-2 performs a critical homeostatic role in the subretinal compartment involving a chloride regulatory mechanism that is critical for the survival of both RPE and photoreceptors.


Asunto(s)
Canales de Cloruro/fisiología , Células Fotorreceptoras/citología , Retina/citología , Degeneración Retiniana , Epitelio Pigmentado de la Retina/metabolismo , Animales , Canales de Cloruro CLC-2 , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Fotorreceptoras/metabolismo , Retina/metabolismo
7.
J Biol Chem ; 296: 100074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33187987

RESUMEN

The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.


Asunto(s)
Encefalopatías/fisiopatología , Canales de Cloruro/fisiología , Enfermedades Testiculares/fisiopatología , Animales , Astrocitos/metabolismo , Encefalopatías/metabolismo , Canales de Cloruro CLC-2 , Moléculas de Adhesión Celular Neurona-Glia/genética , Proteínas de Ciclo Celular/genética , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Homeostasis , Humanos , Activación del Canal Iónico , Hierro/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Oligodendroglía/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Enfermedades Testiculares/metabolismo
8.
Cell Rep ; 33(13): 108570, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378669

RESUMEN

Calcium (Ca2+) is the primary stimulus for transmembrane protein 16 (TMEM16) Ca2+-activated chloride channels and phospholipid scramblases, which regulate important physiological processes ranging from smooth muscle contraction to blood coagulation and tumor progression. Binding of intracellular Ca2+ to two highly conserved orthosteric binding sites in transmembrane helices (TMs) 6-8 efficiently opens the permeation pathway formed by TMs 3-7. Recent structures of TMEM16K and TMEM16F scramblases revealed an additional Ca2+ binding site between TM2 and TM10, whose functional relevance remains unknown. Here, we report that Ca2+ binds with high affinity to the equivalent third Ca2+ site in TMEM16A to enhance channel activation. Our cadmium (Cd2+) metal bridging experiments reveal that the third Ca2+ site's conformational states can profoundly influence TMEM16A's opening. Our study thus confirms the existence of a third Ca2+ site in TMEM16A, defines its functional importance in channel gating, and provides insight into a long-range allosteric gating mechanism of TMEM16 channels and scramblases.


Asunto(s)
Anoctamina-1/fisiología , Calcio/metabolismo , Canales de Cloruro/fisiología , Anoctamina-1/química , Sitios de Unión , Cadmio/metabolismo , Membrana Celular/metabolismo , Electrofisiología/métodos , Células HEK293 , Humanos , Activación del Canal Iónico , Transporte Iónico , Modelos Moleculares , Mutación , Proteínas de Transferencia de Fosfolípidos/fisiología , Conformación Proteica , Dominios Proteicos
9.
Biochem Biophys Res Commun ; 533(4): 1240-1246, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33069359

RESUMEN

PURPOSE: In the present study, we attempted to explore the role of chloride channel 3 (CLC-3) in colorectal cancer (CRC) and its related mechanism. METHODS: First, the expression level of CLC-3 in CRC tumor tissues and cell lines were measured by RT-qPCR, immunohistochemistry or western blot analysis. CLC-3 expression knockdown in CRC cells was achieved by siRNA transfection. The effect of CLC-3 silence on cell viability, cell cycle, invasion and migration of CRC was estimated by CCK8, flow cytometry based cell cycle assay, and transwell assay, respectively. In order to investigate whether Wnt/ß-catenin signaling was perturbed by CLC-3 knockdown, CLC-3 knockdown cells were treated with pathway activator LiCl, followed by the measurement of the expressions of pathway related genes, cell viability, cell cycle, metastasis ability. RESULTS: The expression of CLC-3 was gradually increased from normal adjacent tissues to CRC tumor tissues, and the increase in tumor tissues was related to TNM stages. CLC-3 was overexpressed in four CRC cell lines (HCT116, SW480, LoVo and SW620), compared with NCM460 cells. CLC-3 knockdown significantly reduced cell proliferation, invasion and migration ability, reflected by declined cell viability, arrested G0/G1 cell cycle, decreased invasion and migration ability. In contrast, the declined cell proliferation, invasion and migration of LoVo and SW620 cells induced by CLC-3 knockdown were reversed by the addition of Wnt/ß-catenin activator LiCl. CONCLUSION: CLC-3 contributed to the CRC development and metastasis through Wnt/ß-catenin signaling pathway. CLC-3 could be proposed as the candidate target for CRC treatment.


Asunto(s)
Canales de Cloruro/fisiología , Neoplasias Colorrectales/metabolismo , Vía de Señalización Wnt , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Humanos , Metástasis de la Neoplasia , beta Catenina/metabolismo
10.
Cell Death Dis ; 11(10): 898, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093458

RESUMEN

Currently, only a few available targeted drugs are considered to be effective in stomach adenocarcinoma (STAD) treatment. The PARP inhibitor olaparib is a molecularly targeted drug that continues to be investigated in BRCA-mutated tumors. However, in tumors without BRCA gene mutations, particularly in STAD, the effect and molecular mechanism of olaparib are unclear, which largely restricts the use of olaparib in STAD treatment. In this study, the in vitro results showed that olaparib specifically inhibited cell growth and migration, exerting antitumor effect in STAD cell lines. In addition, a ClC-3/SGK1 regulatory axis was identified and validated in STAD cells. We then found that the down-regulation of ClC-3/SGK1 axis attenuated olaparib-induced cell growth and migration inhibition. On the contrary, the up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced cell growth and migration inhibition, and the enhancement effect could be attenuated by SGK1 knockdown. Consistently, the whole-cell recorded chloride current activated by olaparib presented the same variation trend. Next, the clinical data showed that ClC-3 and SGK1 were highly expressed in human STAD tissues and positively correlated (r = 0.276, P = 0.009). Furthermore, high protein expression of both ClC-3 (P = 0.030) and SGK1 (P = 0.006) was associated with poor survival rate in STAD patients, and positive correlations between ClC-3/SGK1 and their downstream molecules in STAD tissues were demonstrated via the GEPIA datasets. Finally, our results suggested that olaparib inhibited the PI3K/AKT pathway in STAD cells, and up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced PI3K/AKT pathway inhibition. The animal experiments indicated that olaparib also exerted antitumor effect in vivo. Altogether, our findings illustrate that olaparib exerts antitumor effect in human STAD, and ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect. Up-regulation of the ClC-3/SGK1 axis may provide promising therapeutic potential for the clinical application of olaparib in STAD treatment.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Canales de Cloruro/fisiología , Proteínas Inmediatas-Precoces/fisiología , Ftalazinas/farmacología , Piperazinas/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Hum Cell ; 33(4): 1046-1055, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32772229

RESUMEN

Acute ischemic stroke is a devastating disease with very limited therapeutics. Growing appreciation of dysregulated autophagy contributes to the progression of brain ischemic injury, making it to be an appealing intervention target. In terms of its well-characterized consequences, the signal molecules required for autophagy activation are rather poorly defined. Here, we found the induction of chloride channel-3 (ClC-3) directly activated autophagy, which played an important role in limiting cerebral ischemia/reperfusion (I/R) injury. Further mechanism exploration discovered that the up-regulation of ClC-3 was critical for the interaction of Beclin1 and Vps34. After ClC-3 knockdown using adeno-associated virus vectors in vivo, the autophagy activation was partially inhibited through disrupting the formation of Beclin1 and Vps34 complex. Consistent with these observations, ClC-3 knockdown could also significantly aggravated cerebral I/R injury through suppressing autophagy in vivo, which further confirmed the neuroprotective roles of ClC-3. Collectively, we provided an novel evidence for ClC-3 serving as a crucial regulator of autophagy; and our results indicated that the induction of ClC-3 may serve as a self-protective mechanism against cerebral I/R injury.


Asunto(s)
Autofagia/genética , Autofagia/fisiología , Beclina-1/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Canales de Cloruro/metabolismo , Canales de Cloruro/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fármacos Neuroprotectores , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/prevención & control , Animales , Masculino , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
12.
Elife ; 92020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538785

RESUMEN

Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.


Asunto(s)
Presión Sanguínea , Frecuencia Cardíaca , Neuronas/fisiología , Centro Respiratorio/fisiología , Potenciales de Acción , Animales , Canales de Cloruro/fisiología , Potenciales Postsinápticos Excitadores , Masculino , Bulbo Raquídeo/fisiología , Optogenética , Ratas , Ratas Sprague-Dawley , Respiración
13.
J Pharmacol Sci ; 143(3): 176-181, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32386905

RESUMEN

The volume-regulated anion channel (VRAC) plays a central role in maintaining cell volume in response to osmotic stress. Leucine-rich repeat-containing 8A (LRRC8A) was recently identified as an essential component of VRAC although other Cl- channels were also suggested to contribute to VRAC. VRAC is activated when a cell is challenged with a hypotonic environment or even in isotonic conditions challenged with different stimuli. It is not clear how VRAC is activated and whether activation of VRAC in hypotonic and isotonic conditions share the same mechanism. In this present study, we investigated relative contribution of LRRC8A and anoctamin 1(ANO1) to VRAC currents activated by fetal bovine serum (FBS) in isotonic condition, and studied the role of intracellular Ca2+ in this activation. We used CRISPR/Cas9 gene editing approach, electrophysiology, and pharmacology approaches to show that VRAC currents induced by FBS is mostly mediated by LRRC8A in HEK293 cells, but also with significant contribution from ANO1. FBS induces Ca2+ transients and these Ca2+ signals are required for the activation of VRAC by serum. These findings will help to further understand the mechanism in activation of VRAC.


Asunto(s)
Anoctamina-1/fisiología , Calcio/metabolismo , Tamaño de la Célula , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/fisiología , Animales , Proteína 9 Asociada a CRISPR/genética , Bovinos , Canales de Cloruro/metabolismo , Canales de Cloruro/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Células HEK293 , Humanos , Presión Osmótica/fisiología , Suero
14.
Elife ; 92020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32343228

RESUMEN

The CLC family comprises H+-coupled exchangers and Cl- channels, and mutations causing their dysfunction lead to genetic disorders. The CLC exchangers, unlike canonical 'ping-pong' antiporters, simultaneously bind and translocate substrates through partially congruent pathways. How ions of opposite charge bypass each other while moving through a shared pathway remains unknown. Here, we use MD simulations, biochemical and electrophysiological measurements to identify two conserved phenylalanine residues that form an aromatic pathway whose dynamic rearrangements enable H+ movement outside the Cl- pore. These residues are important for H+ transport and voltage-dependent gating in the CLC exchangers. The aromatic pathway residues are evolutionarily conserved in CLC channels where their electrostatic properties and conformational flexibility determine gating. We propose that Cl- and H+ move through physically distinct and evolutionarily conserved routes through the CLC channels and transporters and suggest a unifying mechanism that describes the gating mechanism of both CLC subtypes.


Asunto(s)
Antiportadores/fisiología , Canales de Cloruro/fisiología , Cloruros/metabolismo , Activación del Canal Iónico/fisiología , Transporte Iónico/fisiología , Antiportadores/química , Canales de Cloruro/química , Proteínas de Escherichia coli/fisiología , Simulación de Dinámica Molecular , Protones
15.
Int J Sports Med ; 41(7): 475-483, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32162294

RESUMEN

Exercise training (ET) could improve myocardial infarction (MI), and microRNA-497 is highly associated with MI. This study aimed to investigate whether the regulation of miR-497 is involved in the positive effects of ET on MI. MI rat models induced by left anterior descending (LAD) were subjected to interval training and infarct size was observed. Blood and myocardial samples were collected from the rats for determining the expressions of miR-497. To evaluate the functions of miR-497, miR-497 agomir and antagomir were injected accordingly into grouped rats during ET, and subsequently, the expressions of apoptotic and inflammatory factors were determined. ET reduced the infarct size in MI rats and inhibited the levels of miR-497. MiR-497 agomir injection enlarged the infarct size, and reversed the shrunk infarct size induced by ET. However, miR-497 antagomir further promoted the positive effect on MI improved by ET. Chloride voltage-gated channel 3 (CLCN3) was identified as the most possible target for miR-497. Moreover, ET improving MI also involved the regulation of apoptotic and inflammatory factors. The mechanisms underlying the positive effects of ET on MI were highly associated with the regulation of miR-497.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Condicionamiento Físico Animal/fisiología , Remodelación Ventricular , Animales , Apoptosis , Canales de Cloruro/fisiología , Regulación hacia Abajo , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley
16.
Acta Pharmacol Sin ; 41(8): 1073-1084, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32139897

RESUMEN

Serum- and glucocorticoid-inducible kinease-1 (SGK1) is a serine/threonine kinase regulated by hypotonic stimuli, which is involved in regulation of cell cycle and apoptosis. Our previous study shows that activation of volume-regulated Cl- channels (VRCCs) protects rat basilar artery smooth muscle cells (BASMCs) against hydrogen peroxide (H2O2)-induced apoptosis. In the present study, we investigated whether SGK1 was involved in the protective effect of VRCCs in BASMCs. We showed that hypotonic challenge significantly reduced H2O2-induced apoptosis, and increased SGK1 phosphorylation, but did not affect SGK1 protein expression. The protective effect of hypotonic challenge against H2O2-induced apoptosis was mediated through inhibiting mitochondria-dependent apoptotic pathway, evidenced by increased Bcl-2/Bax ratio, stabilizing mitochondrial membrane potential (MMP), decreased cytochrome c release from the mitochondria to the cytoplasm, and inhibition of the activation of caspase-9 and caspase-3. These protective effects of hypotonic challenge against H2O2-induced apoptosis was diminished and enhanced, respectively, by SGK1 knockdown and overexpression. We further revealed that SGK1 activation significantly increased forkhead box O3a (FOXO3a) phosphorylation, and then inhibited the translocation of FOXO3a into nucleus and the subsequent expression of Bcl-2 interacting mediator of cell death (Bim). In conclusion, SGK1 mediates the protective effect of VRCCs against H2O2-induced apoptosis in BASMCs via inhibiting FOXO3a/Bim signaling pathway. Our results provide compelling evidences that SGK1 is a critical link between VRCCs and apoptosis, and shed a new light on the treatment of vascular apoptosis-associated diseases, such as vascular remodeling, angiogenesis, and atherosclerosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Canales de Cloruro/fisiología , Peróxido de Hidrógeno/farmacología , Proteínas Inmediatas-Precoces/fisiología , Presión Osmótica/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Animales , Arteria Basilar/citología , Proteína 11 Similar a Bcl2/metabolismo , Regulación hacia Abajo , Proteína Forkhead Box O3/metabolismo , Masculino , Miocitos del Músculo Liso , Ratas Sprague-Dawley
17.
Naunyn Schmiedebergs Arch Pharmacol ; 393(3): 501-510, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659404

RESUMEN

5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a non-specific chloride channel blocker. Peritoneal adhesion is an inevitable complication of abdominal surgery and remains an important clinical problem, leading to chronic pain, intestinal obstruction, and female infertility. The aim of this study is to observe the effects of NPPB on peritoneal adhesions and uncover the underlying mechanism. The formation of postoperative peritoneal adhesions was induced by mechanical injury to the peritoneum of rats. MTT assay and wound-healing assay were used to evaluate proliferation and migration of primary cultured adhesion fibroblasts (AFB) respectively. Whole-cell chloride currents were measured using a fully automated patch-clamp workstation. Cell volume changes were monitored by light microscopy and video imaging. Our results demonstrated that NPPB could significantly prevent the formation of peritoneal adhesion in rats and inhibit the proliferation of AFB in a concentration-dependent manner. NPPB also reduced the migration of AFB cells with an IC50 of 53.09 µM. A 47% hypotonic solution successfully activated the ICl,vol in AFB cells. The current could be blocked by extracellular treatment with NPPB. Moreover, 100 µM NPPB almost completely eliminated the capacity of regulatory volume decrease (RVD) in these cells. These data indicate that NPPB could prevent the formation of postoperative peritoneal adhesions. The possible mechanism may be through the inhibition of the proliferation and migration of AFB cells by modulating ICl,vol and cell volume. These results suggest a potential clinical use of NPPB for preventing the formation of peritoneal adhesions.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Canales de Cloruro/antagonistas & inhibidores , Nitrobenzoatos/uso terapéutico , Peritoneo/efectos de los fármacos , Complicaciones Posoperatorias/tratamiento farmacológico , Adherencias Tisulares/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Movimiento Celular/fisiología , Células Cultivadas , Canales de Cloruro/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Nitrobenzoatos/farmacología , Peritoneo/fisiopatología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología , Ratas , Ratas Sprague-Dawley , Adherencias Tisulares/etiología , Adherencias Tisulares/fisiopatología
18.
Biosci Biotechnol Biochem ; 84(2): 247-255, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31601151

RESUMEN

Several studies have shown that Cl- channels regulate the differentiation of some cell types. Thus, we investigated the role of Cl- channels on adipocyte differentiation using adipose tissue-derived stem cells (ASCs) and Cl- channel blocker. We induced rabbit ASCs into adipocytes using Cl- channel blocker. The expression levels of adipocyte markers were no significant difference between the cells treated with a Cl- channel blocker NPPB and untreated cells. However, when the cells were treated with NPPB, lipid droplets (LDs) sizes decreased compared with the untreated control. Interestingly, the expression levels of Rab8a, which is known as a regulator of LD fusion, were also decreased in the cells treated with NPPB. Other Cl- channel blockers, DIDS and IAA-94, also inhibited large LDs formation and Rab8a expression. These results demonstrate that Cl- channels do not regulate the adipocyte differentiation, but do regulate the LDs formation via Rab8a expression.Abbreviations: ASCs: adipose tissue-derived stem cells; LDs: lipid droplets; RUNX2: runt-related transcription factor 2; CFTR: cystic fibrosis transmembrane conductance regulator; TG: triacylglycerol; FA: fatty acid; GLUT4: glucose transporter type 4; ER: endoplasmic reticulum; ADRP: adipose differentiation-related protein; TIP47: tail-interacting protein of 47 kD; HSL: hormone sensitive lipase; PBS: phosphate-buffered saline; DMEM: Dulbecco's modified Eagle Medium; FBS: fetal bovine serum; SMA: smooth muscle actin; FAS: fatty acid synthase; ZONAB: ZO-1 associated nucleic acid binding protein; PPAR-γ: peroxisome proliferator-activated receptor-γ; C/EBPα: CCAAT/enhancer binding protein α; CE: cholesteryl ester; V-ATPase: vacuolar H+ ATPase.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/fisiología , Canales de Cloruro/fisiología , Gotas Lipídicas/metabolismo , Células Madre/citología , Proteínas de Unión al GTP rab/metabolismo , Animales , Masculino , Conejos
19.
Pharmacol Rep ; 71(6): 1079-1087, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31629088

RESUMEN

BACKGROUND: Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS: We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS: Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 µM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION: Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.


Asunto(s)
Canales de Cloruro/fisiología , Flavonoides/farmacología , Presión Osmótica/efectos de los fármacos , Timocitos/fisiología , Alcaloides/farmacología , Animales , Tamaño de la Célula/efectos de los fármacos , Flavanonas/farmacología , Flavonoides/química , Gramicidina , Técnicas de Placa-Clamp , Quinolizidinas/farmacología , Ratas , Timocitos/efectos de los fármacos , Timocitos/metabolismo
20.
Am J Physiol Cell Physiol ; 317(6): C1268-C1277, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577513

RESUMEN

Cl- channels serve as key regulators of excitability and contractility in vascular, intestinal, and airway smooth muscle cells. We recently reported a Cl- conductance in detrusor smooth muscle (DSM) cells. Here, we used the whole cell patch-clamp technique to further characterize biophysical properties and physiological regulators of the Cl- current in freshly isolated guinea pig DSM cells. The Cl- current demonstrated outward rectification arising from voltage-dependent gating of Cl- channels rather than the Cl- transmembrane gradient. An exposure of DSM cells to hypotonic extracellular solution (Δ 165 mOsm challenge) did not increase the Cl- current providing strong evidence that volume-regulated anion channels do not contribute to the Cl- current in DSM cells. The Cl- current was monotonically dependent on extracellular pH, larger and lower in magnitude at acidic (5.0) and basic pH (8.5) values, respectively. Additionally, intracellularly applied phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] analog [PI(4,5)P2-diC8] increased the average Cl- current density by approximately threefold in a voltage-independent manner. The magnitude of the DSM whole cell Cl- current did not depend on the cell surface area (cell capacitance) regardless of the presence or absence of PI(4,5)P2-diC8, an intriguing finding that underscores the complex nature of Cl- channel expression and function in DSM cells. Removal of both extracellular Ca2+ and Mg2+ did not affect the DSM whole cell Cl- current, whereas Gd3+ (1 mM) potentiated the current. Collectively, our recent and present findings strongly suggest that Cl- channels are critical regulators of DSM excitability and are regulated by extracellular pH, Gd3+, and PI(4,5)P2.


Asunto(s)
Canales de Cloruro/fisiología , Cloruros/metabolismo , Gadolinio/metabolismo , Potenciales de la Membrana/fisiología , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Calcio/metabolismo , Cationes Bivalentes , Canales de Cloruro/efectos de los fármacos , Gadolinio/farmacología , Cobayas , Concentración de Iones de Hidrógeno , Transporte Iónico , Magnesio/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/citología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/análogos & derivados , Fosfatidilinositol 4,5-Difosfato/farmacología , Cultivo Primario de Células , Vejiga Urinaria/citología , Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA