Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Mol Pharmacol ; 100(6): 540-547, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503975

RESUMEN

G protein-gated inwardly rectifying K+ (GIRK) channels are critical mediators of excitability in the heart and brain. Enhanced GIRK-channel activity has been implicated in the pathogenesis of supraventricular arrhythmias, including atrial fibrillation. The lack of selective pharmacological tools has impeded efforts to investigate the therapeutic potential of cardiac GIRK-channel interventions in arrhythmias. Here, we characterize a recently identified GIRK-channel inhibitor, VU0468554. Using whole-cell electrophysiological approaches and primary cultures of sinoatrial nodal cells and hippocampal neurons, we show that VU0468554 more effectively inhibits the cardiac GIRK channel than the neuronal GIRK channel. Concentration-response experiments suggest that VU0468554 inhibits Gßγ-activated GIRK channels in noncompetitive and potentially uncompetitive fashion. In contrast, VU0468554 competitively inhibits GIRK-channel activation by ML297, a GIRK-channel activator containing the same chemical scaffold as VU0468554. In the isolated heart model, VU0468554 partially reversed carbachol-induced bradycardia in hearts from wild-type mice but not Girk4-/- mice. Collectively, these data suggest that VU0468554 represents a promising new pharmacological tool for targeting cardiac GIRK channels with therapeutic implications for relevant cardiac arrhythmias. SIGNIFICANCE STATEMENT: Although cardiac GIRK-channel inhibition shows promise for the treatment of supraventricular arrhythmias, the absence of subtype-selective channel inhibitors has hindered exploration into this therapeutic strategy. This study utilizes whole-cell patch-clamp electrophysiology to characterize the new GIRK-channel inhibitor VU0468554 in human embryonic kidney 293T cells and primary cultures. We report that VU0468554 exhibits a favorable pharmacodynamic profile for cardiac over neuronal GIRK channels and partially reverses GIRK-mediated bradycardia in the isolated mouse heart model.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción , Animales , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología
2.
J Biol Chem ; 296: 100535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33713702

RESUMEN

Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly rectifying K+ current (IKACh), composed of Kir3.1/Kir3.4 heterotetrameric and Kir3.4 homotetrameric channel subunits, is one of the best validated atrial-specific ion channels. Previous research pointed to a series of benzopyran derivatives with potential for treatment of arrhythmias, but their mechanism of action was not defined. Here, we characterize one of these compounds termed Benzopyran-G1 (BP-G1) and report that it selectively inhibits the Kir3.1 (GIRK1 or G1) subunit of the KACh channel. Homology modeling, molecular docking, and molecular dynamics simulations predicted that BP-G1 inhibits the IKACh channel by blocking the central cavity pore. We identified the unique F137 residue of Kir3.1 as the critical determinant for the IKACh-selective response to BP-G1. The compound interacts with Kir3.1 residues E141 and D173 through hydrogen bonds that proved critical for its inhibitory activity. BP-G1 effectively blocked the IKACh channel response to carbachol in an in vivo rodent model and displayed good selectivity and pharmacokinetic properties. Thus, BP-G1 is a potent and selective small-molecule inhibitor targeting Kir3.1-containing channels and is a useful tool for investigating the role of Kir3.1 heteromeric channels in vivo. The mechanism reported here could provide the molecular basis for future discovery of novel, selective IKACh channel blockers to treat atrial fibrillation with minimal side effects.


Asunto(s)
Potenciales de Acción , Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Benzopiranos/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Activación del Canal Iónico , Animales , Antiarrítmicos/química , Benzopiranos/química , Humanos , Ratones , Simulación del Acoplamiento Molecular
3.
Eur J Pharmacol ; 890: 173640, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33045198

RESUMEN

Opioids are the most powerful analgesics used clinically; however, severe side effects limit their long-term use. Various concepts involving biased intracellular signaling, partial agonism or multi-receptor targeting have been proposed to identify novel opioids with increased analgesic efficacy but reduced side effects. The search for such 'better opioids' implies screening of huge compound libraries and requires highly reliable, easy to perform and high throughput screening (HTS) assays. Here, we utilize an established membrane potential assay to monitor activation of G protein-coupled inwardly rectifying potassium (GIRK) channels, one of the main effectors of opioid receptor signaling, as readout to determine pharmacological profiles of opioids in a non-invasive manner. Specifically, in this study, we optimize assay conditions and extend the application of this assay to screen all four members of the opioid receptor family, stably expressed in AtT-20 and HEK293 cells. This ultra-sensitive system yielded EC50 values in the nano-molar range. We further validate this system for screening cells stably co-expressing two opioid receptors, which could be a valuable tool for investigating bi-functional ligands and studying interactions between receptors. Additionally, we demonstrate the utility of this assay to study antagonists as well as ligands with varying efficacies. Our results suggest that this assay could easily be up-scaled to HTS assay in order to efficiently study receptor activation and screen for novel opioids.


Asunto(s)
Proteínas de Unión al GTP/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Potenciales de la Membrana/efectos de los fármacos , Receptores Opioides/metabolismo , Transducción de Señal/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Fluorescencia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas de Unión al GTP/agonistas , Proteínas de Unión al GTP/antagonistas & inhibidores , Células HEK293 , Humanos , Ligandos , Ratones
4.
J Neurosci ; 40(44): 8543-8555, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33020214

RESUMEN

A rare mutation affecting the Forkhead-box protein P2 (FOXP2) transcription factor causes a severe monogenic speech and language disorder. Mice carrying an identical point mutation to that observed in affected patients (Foxp2+/R552H mice) display motor deficits and impaired synaptic plasticity in the striatum. However, the consequences of the mutation on neuronal function, in particular in the cerebral cortex, remain little studied. Foxp2 is expressed in a subset of Layer VI cortical neurons. Here, we used Ntsr1-EGFP mice to identify Foxp2+ neurons in the mouse auditory cortex ex vivo. We studied the functional impact of the R552H mutation on the morphologic and functional properties of Layer VI cortical neurons from Ntsr1-EGFP; Foxp2+/R552H male and female mice. The complexity of apical, but not basal dendrites was significantly lower in Foxp2+/R552H cortico-thalamic neurons than in control Foxp2+/+ neurons. Excitatory synaptic inputs, but not inhibitory synaptic inputs, were decreased in Foxp2+/R552H mice. In response, homeostatic mechanisms would be expected to increase neuronal gain, i.e., the conversion of a synaptic input into a firing output. However, the intrinsic excitability of Foxp2+ cortical neurons was lower in Foxp2+/R552H neurons. A-type and delayed-rectifier (DR) potassium currents, two putative transcriptional targets of Foxp2, were not affected by the mutation. In contrast, GABAB/GIRK signaling, another presumed target of Foxp2, was increased in mutant neurons. Blocking GIRK channels strongly attenuated the difference in intrinsic excitability between wild-type (WT) and Foxp2+/R552H neurons. Our results reveal a novel role for Foxp2 in the control of neuronal input/output homeostasis.SIGNIFICANCE STATEMENT Mutations of the Forkhead-box protein 2 (FOXP2) gene in humans are the first known monogenic cause of a speech and language disorder. The Foxp2 mutation may directly affect neuronal development and function in neocortex, where Foxp2 is expressed. Brain imaging studies in patients with a heterozygous mutation in FOXP2 showed abnormalities in cortical language-related regions relative to the unaffected members of the same family. However, the role of Foxp2 in neocortical neurons is poorly understood. Using mice with a Foxp2 mutation equivalent to that found in patients, we studied functional modifications in auditory cortex neurons ex vivo We found that mutant neurons exhibit alterations of synaptic input and GABAB/GIRK signaling, reflecting a loss of neuronal homeostasis.


Asunto(s)
Corteza Cerebral/fisiología , Factores de Transcripción Forkhead/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Neuronas/fisiología , Receptores de GABA-B/fisiología , Proteínas Represoras/genética , Tálamo/fisiología , Animales , Corteza Cerebral/citología , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Espinas Dendríticas/fisiología , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Antagonistas del GABA/farmacología , Masculino , Ratones , Ratones Transgénicos , Mutación , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Tálamo/citología
5.
Sci Rep ; 10(1): 15654, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973240

RESUMEN

In the eyeblink conditioning paradigm, cerebellar Purkinje cells learn to respond to the conditional stimulus with an adaptively timed pause in its spontaneous firing. Evidence suggests that the pause is elicited by glutamate released from parallel fibers and acting on metabotropic receptors (mGluR7) which initiates a delayed-onset suppression of firing. We suggested that G protein activation of hyperpolarizing Kir3 channels (or 'GIRK', G protein-coupled inwardly-rectifying K+ channels) could be part of such a mechanism. Application of the Kir3 antagonist Tertiapin-LQ locally in the superficial layers of the cerebellar cortex in decerebrate ferrets suppressed normal performance of Purkinje cell pause responses to the conditional stimulus. Importantly, there was no detectable effect on spontaneous firing. These findings suggest that intact functioning of Kir3 channels in the cerebellar cortex is required for normal conditioned Purkinje cell responses.


Asunto(s)
Corteza Cerebelosa/citología , Condicionamiento Clásico/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Células de Purkinje/efectos de los fármacos , Animales , Venenos de Abeja/farmacología , Hurones , Masculino , Células de Purkinje/metabolismo
6.
Neuropharmacology ; 176: 108214, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32622786

RESUMEN

Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. One of the major RTT features is breathing dysfunction characterized by periodic hypo- and hyperventilation. The breathing disorders are associated with increased brainstem neuronal excitability, which can be alleviated with GABA agonists. Since neuronal hypoexcitability occurs in the forebrain of RTT models, it is necessary to find pharmacological agents with a relative preference to brainstem neurons. Here we show evidence for the improvement of breathing disorders of Mecp2-disrupted mice with the brainstem-acting drug cloperastine (CPS) and its likely neuronal targets. CPS is an over-the-counter cough medicine that has an inhibitory effect on brainstem neuronal networks. In Mecp2-disrupted mice, CPS (30 mg/kg, i.p.) decreased the occurrence of apneas/h and breath frequency variation. GIRK currents expressed in HEK cells were inhibited by CPS with IC50 1 µM. Whole-cell patch clamp recordings in locus coeruleus (LC) and dorsal tegmental nucleus (DTN) neurons revealed an overall inhibitory effect of CPS (10 µM) on neuronal firing activity. Such an effect was reversed by the GABAA receptor antagonist bicuculline (20 µM). Voltage clamp studies showed that CPS increased GABAergic sIPSCs in LC cells, which was blocked by the GABAB receptor antagonist phaclofen. Functional GABAergic connections of DTN neurons with LC cells were shown. These results suggest that CPS improves breathing dysfunction in Mecp2-null mice by blocking GIRK channels in synaptic terminals and enhancing GABA release.


Asunto(s)
Antitusígenos/uso terapéutico , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Piperidinas/uso terapéutico , Respiración/efectos de los fármacos , Síndrome de Rett/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo , Animales , Antitusígenos/farmacología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Agonistas del GABA/farmacología , Agonistas del GABA/uso terapéutico , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Piperidinas/farmacología , Bloqueadores de los Canales de Potasio , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Ratas , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología
7.
Nihon Yakurigaku Zasshi ; 155(3): 130-134, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32378628

RESUMEN

Recently, topics related to substance dependence and behavioral addiction have been reported through the media. Therapeutic treatment for substance dependence and behavioral addiction is one of the challenges in a clinical practice. This is because there is no therapeutic treatment for a complete cure, and reuses and repetitive hospitalization occur in patients. Therefore, it is an urgent need to develop new treatments for substance dependence and behavioral addiction. In the present review, we outline associations between dependence and G-protein-activated inwardly rectifying potassium (GIRK) channels which we focus on as therapeutic targets, and introduce ongoing clinical study using an inhibitor of GIRK channels. Previous studies including animals and patients have accumulated the results that GIRK channels have a key role for mediating signals from addictive substances. GIRK channels are expressed in various rodent brain regions including the reward system. The activation of G protein-coupled receptors (GPCRs) that activates GIRK channels through G-protein ßγ subunits and activated GIRK channels contribute to control of neuronal excitability. Pretreatment with ifenprodil that is one of the GIRK channel blockers suppressed addictive substance-induced behaviors in animals. Ifenprodil is safe and broadly used as a cerebral circulation/metabolism ameliorator that is covered by medical insurance in Japan. The authors reported that ifenprodil treatment for 3 months decreased alcohol use scores in patients with alcohol dependence compared with patients who received the control medication. We currently conduct a clinical trial to investigate the outcomes of ifenprodil treatment for methamphetamine dependence. In the future, we will expand clinical studies using ifenprodil for patients with other substance dependence and behavioral addiction.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Piperidinas/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Anfetaminas/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Humanos , Japón , Metanfetamina , Neuronas , Recompensa
8.
SLAS Discov ; 25(5): 420-433, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32292089

RESUMEN

K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.


Asunto(s)
Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Canales de Potasio/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Humanos , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/agonistas , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores
9.
Life Sci ; 240: 117068, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751583

RESUMEN

AIMS: Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS: Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 µM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS: A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE: An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Receptor de Adenosina A1/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Venenos de Abeja/farmacología , Relojes Biológicos , Enfermedad Crónica , Perros , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Receptor de Adenosina A1/efectos de los fármacos , Xantinas/farmacología
10.
Epilepsia ; 60(12): 2370-2385, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31755997

RESUMEN

OBJECTIVE: Much evidence suggests that the subiculum plays a significant role in the regulation of epileptic activity. Lactate acts as a neuroprotective agent against many conditions that cause brain damage. During epileptic seizures, lactate formation reaches up to ~6 mmol/L in the brain. We investigated the effect of lactate on subicular pyramidal neurons after induction of epileptiform activity using 4-aminopyridine (4-AP-0Mg2+ ) in an in vitro epilepsy model in rats. The signaling mechanism associated with the suppression of epileptiform discharges by lactate was also investigated. METHODS: We used patch clamp electrophysiology recordings on rat subicular neurons of acute hippocampal slices. Immunohistochemistry was used for demonstrating the expression of hydroxycarboxylic acid receptor 1 (HCA1) in the subiculum. RESULTS: Our study showed that application of 6 mmol/L lactate after induction of epileptiform activity reduced spike frequency (control 2.5 ± 1.23 Hz vs lactate 1.01 ± 0.91 Hz, P = .049) and hyperpolarized the subicular neurons (control -51.8 ± 1.9 mV vs lactate -57.2 ± 3.56 mV, P = .002) in whole cell patch-clamp experiments. After confirming the expression of HCA1 in subicular neurons, we demonstrated that lactate-mediated effect occurs via HCA1 by using its specific agonist. All values are mean ±SD. Electrophysiological recordings revealed the involvement of Gßγ and intracellular cAMP in the lactate-induced effect. Furthermore, current-clamp and voltage-clamp experiments showed that the G protein-coupled inwardly rectifying potassium (GIRK) channel blocker tertiapin-Q, negated the lactate-induced inhibitory effect, which confirmed that lactate application results in outward GIRK current. SIGNIFICANCE: Our finding points toward the potential role of lactate as an anticonvulsant by showing lactate-induced suppression of epileptiform activity in subicular neurons. The study gives a different insight by suggesting importance of endogenous metabolite and associated signaling factors, which can aid in improving the present therapeutic approach for treating epilepsy.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Hipocampo/metabolismo , Ácido Láctico/farmacología , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
11.
Fitoterapia ; 137: 104272, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31326417

RESUMEN

In the current study effects of fungal extracts on the G-protein-activated inwardly rectifying potassium channel (GIRK1/4) were screened using the automated patch-clamp method. 40 organic (n-hexane, chloroform, and 50% methanol) and aqueous extracts were prepared from 10 mushroom species native to Hungary. Among the examined fungal fractions of different polarities some n-hexane and chloroform extracts exerted considerable ion channel activity. One of the most active fungal species, Hypholoma lateritium was selected for further detailed examination to determine the compounds responsible for the observed pharmacological property. Evaluation of the ion channel activity of mushroom metabolites 1-10 revealed that lanosta-7,9(11)-diene-12ß,21α-epoxy-2α,3ß,24ß,25-tetraol (5) demonstrates remarkable blocking activity on GIRK current (IC50 395.1 ±â€¯31.8 nM). Investigation of the selectivity of the GIRK inhibitory effect proved that lanosta-7,9(11)-diene-12ß,21α-epoxy-2α,3ß,24ß,25-tetraol (5) has only weak inhibitory activity on hERG channel (7.9 ±â€¯2.8% at 100 µM), exerting more than three orders of magnitude lower blocking activity on hERG channel than on GIRK channel.


Asunto(s)
Agaricales/química , Canal de Potasio ERG1/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Células HEK293 , Humanos , Hungría , Estructura Molecular , Técnicas de Placa-Clamp
12.
Br J Pharmacol ; 176(17): 3161-3179, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116876

RESUMEN

BACKGROUND AND PURPOSE: A second-generation antihistamine, terfenadine, is known to induce arrhythmia by blocking hERG channels. In this study, we have shown that terfenadine also inhibits the activity of G-protein-gated inwardly rectifying K+ (GIRK) channels, which regulate the excitability of neurons and cardiomyocytes. To clarify the underlying mechanism(s), we examined the effects of several antihistamines on GIRK channels and identified the structural determinant for the inhibition. EXPERIMENTAL APPROACH: Electrophysiological recordings were made in Xenopus oocytes and rat atrial myocytes to analyse the effects of antihistamines on various GIRK subunits (Kir 3.x). Mutagenesis analyses identified the residues critical for inhibition by terfenadine and the regulation of ion selectivity. The potential docking site of terfenadine was analysed by molecular docking. KEY RESULTS: GIRK channels containing Kir 3.1 subunits heterologously expressed in oocytes and native GIRK channels in atrial myocytes were inhibited by terfenadine and other non-sedating antihistamines. In Kir 3.1 subunits, mutation of Phe137, located in the centre of the pore helix, to the corresponding Ser in Kir 3.2 subunits reduced the inhibition by terfenadine. Introduction of an amino acid with a large side chain in Kir 3.2 subunits at Ser148 increased the inhibition. When this residue was mutated to a non-polar amino acid, the channel became permeable to Na+ . Phosphoinositide-mediated activity was also decreased by terfenadine. CONCLUSION AND IMPLICATIONS: The Phe137 residue in Kir 3.1 subunits is critical for inhibition by terfenadine. This study provides novel insights into the regulation of GIRK channels by the pore helix and information for drug design.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Antagonistas de los Receptores Histamínicos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Antagonistas de los Receptores Histamínicos/química , Masculino , Simulación del Acoplamiento Molecular , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ratas , Ratas Wistar , Relación Estructura-Actividad , Xenopus laevis
13.
J Neurosci ; 39(19): 3600-3610, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30837265

RESUMEN

Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Actividad Motora/fisiología , Área Tegmental Ventral/metabolismo , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
14.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866445

RESUMEN

Imbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer's disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo. In a non-transgenic mouse model of AD, field postsynaptic potentials (fPSPs) from the CA3⁻CA1 synapse in the dorsal hippocampus were recorded in freely moving mice. Intracerebroventricular (ICV) injections of amyloid-ß (Aß) or GirK channel modulators impaired ionotropic (GABAA-mediated fPSPs) and metabotropic (GirK-mediated fPSPs) inhibitory signaling and disrupted the potentiation of synaptic inhibition. However, the activation of GirK channels prevented Aß-induced changes in GABAA components. Our data shows, for the first time, the presence of long-term potentiation (LTP) for both the GABAA and GirK-mediated inhibitory postsynaptic responses in vivo. In addition, our results support the importance of an accurate level of GirK-dependent signaling for dorsal hippocampal performance in early amyloid pathology models by controlling the excess of excitation that disrupts synaptic plasticity processes.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/administración & dosificación , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Sinapsis/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Inyecciones , Potenciación a Largo Plazo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
15.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30764634

RESUMEN

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Bradicardia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Enfermedades Genéticas Congénitas , Mutación Missense , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/patología , Bloqueo Atrioventricular/fisiopatología , Benzopiranos/farmacología , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patología , Bradicardia/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Masculino , Xenopus laevis , Pez Cebra
16.
Brain Res ; 1710: 157-162, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599137

RESUMEN

The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigates, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 µM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdischarge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30-50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.


Asunto(s)
Estimulación Eléctrica , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Neuronas/fisiología , Receptores de GABA-B/fisiología , Animales , Venenos de Abeja/administración & dosificación , Estimulación Encefálica Profunda , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Antagonistas de Receptores de GABA-B/administración & dosificación , Masculino , Ácidos Fosfínicos/administración & dosificación , Bloqueadores de los Canales de Potasio/administración & dosificación , Propanolaminas/administración & dosificación , Ratas Wistar
17.
Elife ; 72018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30556810

RESUMEN

Dopamine (D2) receptors provide autoinhibitory feedback onto dopamine neurons through well-known interactions with voltage-gated calcium channels and G protein-coupled inwardly-rectifying potassium (GIRK) channels. Here, we reveal a third major effector involved in D2R modulation of dopaminergic neurons - the sodium leak channel, NALCN. We found that activation of D2 receptors robustly inhibits isolated sodium leak currents in wild-type mice but not in NALCN conditional knockout mice. Intracellular GDP-ßS abolished the inhibition, indicating a G protein-dependent signaling mechanism. The application of dopamine reliably slowed pacemaking even when GIRK channels were pharmacologically blocked. Furthermore, while spontaneous activity was observed in nearly all dopaminergic neurons in wild-type mice, neurons from NALCN knockouts were mainly silent. Both observations demonstrate the critical importance of NALCN for pacemaking in dopaminergic neurons. Finally, we show that GABA-B receptor activation also produces inhibition of NALCN-mediated currents. Therefore, we identify NALCN as a core effector of inhibitory G protein-coupled receptors.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Neuronas Dopaminérgicas/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Canales Iónicos/genética , Proteínas del Tejido Nervioso/genética , Receptores de Dopamina D2/metabolismo , Receptores de GABA-B/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Canales de Calcio Tipo N/genética , Dopamina/farmacología , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Expresión Génica , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Canales Iónicos/deficiencia , Transporte Iónico/efectos de los fármacos , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtomía , Proteínas del Tejido Nervioso/deficiencia , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Receptores de Dopamina D2/genética , Receptores de GABA-B/genética , Tionucleótidos/farmacología , Técnicas de Cultivo de Tejidos , Valina/análogos & derivados , Valina/farmacología , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo
18.
J Nat Prod ; 81(11): 2483-2492, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411614

RESUMEN

Nine new (1-9) and two known (10, 11) jatrophane diterpenoids were isolated from the methanol extract of Euphorbia dulcis. The structure elucidation of the compounds was performed by means of extensive spectroscopic analysis, including HRESIMS, 1D (1H, JMOD), and 2D (HSQC, HMBC, 1H-1H-COSY, NOESY) NMR experiments. The absolute configuration of compound 1 was determined by single-crystal X-ray diffraction. The electrophysiological effects of compounds 1-11 and the five diterpenoids (12-16) previously isolated from Euphorbia taurinensis were investigated on stable transfected HEK-GIRK1/4 (Kir3.1/3.4) and HEK-hERG (Kv11.1) cell lines using automated patch-clamp equipment. The majority of the diterpenoids showed significant blocking activity on GIRK channels (60.8-88.7% at 10 µM), while compounds 1, 2, 9-11, 13, and 14 exerted notable inhibitory effects even at 1 µM concentration. None of the jatrophane diterpenoids interfered with the function of hERG proteins; however, compound 14 remarkably hampered K+ flow through hERG channels. These selective activities suggest that jatrophane diterpenoids may represent a group of potential lead compounds for the development of novel therapeutic agents against atrial fibrillation.


Asunto(s)
Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Euphorbia/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Diterpenos/química , Estructura Molecular , Bloqueadores de los Canales de Potasio/química
19.
Neuropsychopharmacol Rep ; 38(1): 9-17, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-30106266

RESUMEN

AIM: This prospective, randomized, controlled, rater-blinded study investigated the effect of G protein-activated inwardly rectifying potassium (GIRK) channel inhibitor ifenprodil on alcohol use in patients with alcohol dependence. METHODS: The participants were 68 outpatients with alcohol dependence who were assigned to an ifenprodil group (administered 60 mg ifenprodil per day for 3 months) or control group (administered 600 mg ascorbic acid and calcium pantothenate per day for 3 months). The participants completed a questionnaire that included the frequency of alcohol drinking and presence of heavy drinking before the study period (time 1) and 3 months after the start of the study period (time 2). The alcohol use score was calculated using these two items. RESULTS: Valid data were obtained from 46 participants (25 in the ifenprodil group and 21 in the control group). The alcohol use score at time 2 in the ifenprodil group was significantly lower than that in the control group after adjusting for the score at time 1 and some covariates. The intention-to-treat analysis of multiply imputed datasets indicated similar results. Group differences in the frequency of alcohol drinking were significant in the multiply imputed datasets but not in 46 participants. The ifenprodil group had a significantly lower rate of heavy drinking at time 2 than the control group. CONCLUSIONS: This study found an inhibitory effect of ifenprodil on alcohol use in patients with alcohol dependence. The results support the hypothesis that GIRK channel inhibitors ameliorate alcohol dependence. TRIAL REGISTRY: This trial was registered in the UMIN clinical trial registry (UMIN000006347).


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Piperidinas/uso terapéutico , Bloqueadores de los Canales de Potasio/uso terapéutico , Adulto , Anciano , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Humanos , Masculino , Persona de Mediana Edad , Piperidinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología
20.
Neuroscience ; 384: 329-339, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29885525

RESUMEN

Clinical and basic science research have revealed persistent effects of early-life injury on nociceptive processing and resulting pain sensitivity. While recent work has identified clear deficits in fast GABAA- and glycine receptor-mediated inhibition in the adult spinal dorsal horn after neonatal tissue damage, the effects of early injury on slow, metabotropic inhibition within spinal pain circuits are poorly understood. Here we provide evidence that neonatal surgical incision significantly enhances postsynaptic GABAB receptor signaling within the mature superficial dorsal horn (SDH) in a cell type-dependent manner. In vitro patch-clamp recordings were obtained from identified lamina I projection neurons and GABAergic interneurons in the SDH of adult female mice following hindpaw incision at postnatal day (P)3. Early tissue damage increased the density of the outward current evoked by baclofen, a selective GABAB receptor agonist, in projection neurons but not inhibitory interneurons. This could reflect enhanced postsynaptic expression of downstream G protein-coupled inward-rectifying potassium channels (GIRKs), as the response to the GIRK agonist ML297 was greater in projection neurons from neonatally incised mice compared to naive littermate controls. Meanwhile, presynaptic GABAB receptor-mediated reduction of spontaneous neurotransmitter release onto both neuronal populations was unaffected by early-life injury. Collectively, our findings suggest that ascending nociceptive transmission to the adult brain is under stronger control by spinal metabotropic inhibition in the aftermath of neonatal tissue damage.


Asunto(s)
Neuronas/fisiología , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología , Herida Quirúrgica/metabolismo , Transmisión Sináptica/fisiología , Animales , Baclofeno/farmacología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas de Receptores GABA-B/farmacología , Ratones , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Compuestos de Fenilurea/farmacología , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA