Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931004

RESUMEN

Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.


Asunto(s)
Química Farmacéutica , Epilepsia , Bloqueadores de los Canales de Potasio , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Química Farmacéutica/métodos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Relación Estructura-Actividad , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de potasio activados por Sodio
2.
Mar Drugs ; 22(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786608

RESUMEN

We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is 894 nucleotides long and encodes 297 amino acids containing five presumptive ShK-like peptides. An electrophysiological assay demonstrated that the fifth peptide, NnK-1, which was chemically synthesized, is an effective blocker of hKv1.3, hKv1.4, and hKv1.5. Multiple-sequence alignment with cnidarian Shk-like peptides, which have Kv1.3-blocking activity, revealed that three residues (3Asp, 25Lys, and 34Thr) of NnK-1, together with six cysteine residues, were conserved. Therefore, we hypothesized that these three residues are crucial for the binding of the toxin to voltage-gated potassium channels. This notion was confirmed by an electrophysiological assay with a synthetic peptide (NnK-1 mu) where these three peptides were substituted with 3Glu, 25Arg, and 34Met. In conclusion, we successfully identified and characterized a new voltage-gated potassium channel blocker in jellyfish that interacts with three different voltage-gated potassium channels. A peptide that interacts with multiple voltage-gated potassium channels has many therapeutic applications in various physiological and pathophysiological contexts.


Asunto(s)
Péptidos , Bloqueadores de los Canales de Potasio , Canales de Potasio con Entrada de Voltaje , Escifozoos , Animales , Humanos , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/química , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Péptidos/farmacología , Péptidos/química , Secuencia de Aminoácidos , Venenos de Cnidarios/farmacología , Venenos de Cnidarios/química , Alineación de Secuencia
3.
J Med Chem ; 67(11): 9124-9149, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38782404

RESUMEN

Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.


Asunto(s)
Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Relación Estructura-Actividad , Células HEK293 , Simulación por Computador , Canales de potasio activados por Sodio
4.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631503

RESUMEN

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Arteria Femoral , Glucósidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal , Tiofenos , Vasodilatación , Animales , Conejos , Arteria Femoral/efectos de los fármacos , Arteria Femoral/fisiología , Vasodilatación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Tiofenos/farmacología , Masculino , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Vasodilatadores/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores
5.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663541

RESUMEN

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Asunto(s)
Aripiprazol , Vasos Coronarios , Miocitos del Músculo Liso , Bloqueadores de los Canales de Potasio , Canales de Potasio con Entrada de Voltaje , Animales , Aripiprazol/farmacología , Conejos , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/citología , Bloqueadores de los Canales de Potasio/farmacología , Masculino , Antipsicóticos/farmacología , Relación Dosis-Respuesta a Droga
6.
Bioorg Chem ; 115: 105264, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34416509

RESUMEN

The discovery of more selective and safer voltage-gated potassium channel blockers is an extremely demanding approach. Designing selective Kv1.5 inhibitors is very challenging as only limited data is available on this target due to a lacking crystal structure for this ion channel receptor. Herein, we synthesized a series of 21 novel quinazolinone dimers 3a-i, 5a-i and 10a-c. We tried to avoid structural features responsible for non-selectivity and for most potassium channel blockers' side effects in our design. In contrast to other works, which lack investigation over wide ranges of potassium and sodium channels, we screened the inhibitory activity of our synthesized compounds over multiple voltage-gated potassium channels, including six different human Kv1 channel subtypes Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels as well as Kv2.1, Kv3.1, Kv4.3, Kv7.2, Kv7.3, Kv10.1, hERG, and Shaker IR. Moreover, these compounds' selectivity was investigated on sodium channels Nav1.2, Nav1.4 and Nav1.5 and calcium channels Cav3.1-Cav3.3. The results revealed two compounds (3a and 3e) with low micromolar Kv1.5 inhibition activity with EC50 values of 5.1 ± 0.9 µM and 12.5 ± 1.1 µM, respectively. However, at higher concentrations, they also showed inhibitory activity on Kv1.3 and Kv1.1 channels. This might be due to structural similarities between these three Kv1 channel isoforms. Compound 3a shows a slight preference for Kv1.5. Interestingly, they lack any activity on other potassium channels (including hERG), sodium channels, and calcium channels. Our findings recommend quinazolinone dimers with ethylene linker as a potential new class of safer Kv1 inhibitors and a good start for designing more selective and potent Kv1.5 inhibitors.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Quinazolinonas/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Canales de Potasio con Entrada de Voltaje/metabolismo , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad
7.
Pharmacol Rep ; 73(6): 1724-1733, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34146337

RESUMEN

BACKGROUND: Olanzapine, an FDA-approved atypical antipsychotic, is widely used to treat schizophrenia and bipolar disorder. In this study, the inhibitory effect of olanzapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells was investigated. METHODS: Electrophysiological recordings were performed in freshly isolated coronary arterial smooth muscle cells. RESULTS: Olanzapine inhibited the Kv channels in a concentration-dependent manner with an IC50 value of 7.76 ± 1.80 µM and a Hill coefficient of 0.82 ± 0.09. Although olanzapine did not change the steady-state activation curve, it shifted the inactivation curve to a more negative potential, suggesting that it inhibited Kv currents by affecting the voltage sensor of the Kv channel. Application of 1 or 2 Hz train pulses did not affect the olanzapine-induced inhibition of Kv channels, suggesting that its effect on Kv channels occurs in a use (state)-independent manner. Pretreatment with DPO-1 (Kv1.5 subtype inhibitor) reduced the olanzapine-induced inhibition of Kv currents. In addition, pretreatment with guangxitoxin (Kv2.1 subtype inhibitor) and linopirdine (Kv7 subtype inhibitor) partially decreased the degree of Kv current inhibition. Olanzapine induced membrane depolarization. CONCLUSION: From these results, we suggest that olanzapine inhibits the Kv channels in a concentration-dependent, but state-independent, manner by affecting the gating properties of Kv channels. The primary Kv channel target of olanzapine is the Kv1.5 subtype.


Asunto(s)
Antipsicóticos/farmacología , Canal de Potasio Kv1.5/antagonistas & inhibidores , Olanzapina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Antipsicóticos/administración & dosificación , Vasos Coronarios/citología , Vasos Coronarios/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Olanzapina/administración & dosificación , Bloqueadores de los Canales de Potasio/administración & dosificación , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Conejos
8.
J Nutr Biochem ; 97: 108767, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34052311

RESUMEN

Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1ß) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1ß in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1ß production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1ß, and LDL(-) slightly increased IL-1ß; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1ß in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1ß and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1ß or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1ß reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1ß was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1ß in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1ß production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.


Asunto(s)
Interleucina-1beta/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Ácido Palmítico/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Receptores Depuradores de Clase E/metabolismo , Animales , Línea Celular Tumoral , Humanos , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/inmunología , Masculino , Ácido Palmítico/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Conejos , Infarto del Miocardio con Elevación del ST/metabolismo , Receptores Depuradores de Clase E/genética , Transducción de Señal , Células THP-1
9.
Biol Pharm Bull ; 44(5): 724-731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952828

RESUMEN

Nicotine enhances attention, working memory and recognition. One of the brain regions associated with these effects of nicotine is the medial prefrontal cortex (mPFC). However, cellular mechanisms that induce the enhancing effects of nicotine remain unclear. To address this issue, we performed whole-cell patch-clamp recordings from mPFC layer 5 pyramidal neurons in slices of C57BL/6J mice. Shortly (approx. 2 min) after bath application of nicotine, the number of action potentials, which were elicited by depolarizing current injection, was increased, and this increase persisted for over 5 min. The effect of nicotine was blocked by the α4ß2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-ß-erythroidine, α7 nAChR antagonist methyllycaconitine, or intracellular perfusion with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Additionally, the voltage-dependent potassium 7 (Kv7) channel blocker, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE-991), as well as nicotine, shortened the spike threshold latency and increased the spike numbers. By contrast, the Kv7 channel opener, retigabine reduced the number of firings, and the addition of nicotine did not increase the spike numbers. These results indicate that nicotine induces long-lasting enhancement of firing activity in mPFC layer 5 pyramidal neurons, which is mediated by the stimulation of the α4ß2 and α7 nAChRs and subsequent increase in intracellular Ca2+ levels followed by the suppression of the Kv7 channels. The novel effect of nicotine might underlie the nicotine-induced enhancement of attention, working memory and recognition.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Nicotina/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Antracenos/farmacología , Células Cultivadas , Femenino , Masculino , Ratones , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Cultivo Primario de Células , Células Piramidales/metabolismo , Receptores Nicotínicos/metabolismo
10.
Eur J Pharmacol ; 904: 174158, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33971179

RESUMEN

Voltage-dependent K+ (Kv) channels play the role of returning the membrane potential to the resting state, thereby maintaining the vascular tone. Here, we used native smooth-muscle cells from rabbit coronary arteries to investigate the inhibitory effect of lorcainide, a class Ic antiarrhythmic agent, on Kv channels. Lorcainide inhibited Kv channels in a concentration-dependent manner with an IC50 of 4.46 ± 0.15 µM and a Hill coefficient of 0.95 ± 0.01. Although application of lorcainide did not change the activation curve, it shifted the inactivation curve toward a more negative potential, implying that lorcainide inhibits Kv channels by changing the channels' voltage sensors. The recovery time constant from channel inactivation increased in the presence of lorcainide. Furthermore, application of train steps (of 1 or 2 Hz) in the presence of lorcainide progressively augmented the inhibition of Kv currents, implying that lorcainide-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with Kv1.5 or Kv2.1/2.2 inhibitors effectively reduced the amplitude of the Kv current but did not affect the inhibitory effect of lorcainide. Based on these results, we conclude that lorcainide inhibits vascular Kv channels in a concentration and use (state)-dependent manner by changing their inactivation gating properties. Considering the clinical efficacy of lorcainide, and the pathophysiological significance of vascular Kv channels, our findings should be considered when prescribing lorcainide to patients with arrhythmia and vascular disease.


Asunto(s)
Antiarrítmicos/farmacología , Bencenoacetamidas/farmacología , Vasos Coronarios/metabolismo , Músculo Liso Vascular/metabolismo , Piperidinas/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Animales , Vasos Coronarios/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Cinética , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Conejos , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/metabolismo
11.
J Neurophysiol ; 125(5): 1954-1972, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852808

RESUMEN

Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Coclear/fisiología , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/fisiología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/fisiología , Canal de Potasio Kv1.6/antagonistas & inhibidores , Canal de Potasio Kv1.6/fisiología , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley
12.
J Gene Med ; 23(5): e3330, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682985

RESUMEN

BACKGROUND: Long non-coding RNA KCNQ1 opposite strand/antisense transcript one gene (KCNQ1OT1) has been reported to be involved in the progression of many types of human cancer, whereas its role in gastric cancer (GC) remains unknown. The present study aimed to investigate the role of KCNQ1OT1 in GC. METHODS: In total, 25 GC tissues and adjacent normal tissues were collected. The expression of KCNQ1OT1, miR-145-5p and ARF6 in GC tissues and cell lines was detected by quantitative reverse transcriptase-polymerase chain reaction or western blotting. Bioinformatics analysis and a dual luciferase reporter assay were performed to determine the relationship between KCNQ1OT1 and miR-145-5p or miR-145-5p and ARF6. Gain- and loss-of function of KCNQ1OT1 and miR-145-5p were achieved to confirm their roles in GC cells. Cell counting kit-8, colony formation and flow cytometry assays were used to evaluate cell viability, proliferation and apoptosis. A xenograft tumor model was established with BGC803 tumor cells transfected with sh-KCNQ1OT1 or empty vector to determine the role of LINC01089 in vivo. RESULTS: The expression levels of KCNQ1OT1 were markedly elevated in GC tissues and cells. Knockdown of KCNQ1OT1 inhibited GC tumor growth, reduced GC cell viability and colony formation, and induced GC cell apoptosis. The expression levels of miR-145-5p were significantly decreased in GC cells and correlated with the expression of KCNQ1OT1 in GC tumors. Moreover, KCNQ1OT1 directly binds with miR-145-5p, which is targeting ARF6. Knockdown of KCNQ1OT1 increased the expression levels of miR-145-5p. Inhibition of miR-145-5p increased the expression levels of KCNQ1OT1 and also attenuated the effects of knockdown of KCNQ1OT1 on the viability, proliferation and apoptosis of GC cells. In addition, overexpression of miR-145-5p reduced GC cell viability and colony formation and induced GC cell apoptosis, whereas overexpression of ARF6 attenuated the effects of overexpression of miR-145-5p on GC cell viability, colony formation and apoptosis. CONCLUSIONS: KCNQ1OT1 can promote GC progression through the miR-145-5p/ARF6 axis. KCNQ1OT1 may serve as a therapeutic target and a diagnostic biomarker of GC.


Asunto(s)
Factor 6 de Ribosilación del ADP/genética , MicroARNs/genética , Neoplasias Gástricas/genética , Anciano , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética , Transducción de Señal/genética , Neoplasias Gástricas/patología
13.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233411

RESUMEN

Gomisin A (Gom A), a lignan isolated from Schisandra chinensis, has been reported produce numerous biological activities. However, its action on the ionic mechanisms remains largely unanswered. The present experiments were undertaken to investigate the possible perturbations of Gom A or other related compounds on different types of membrane ionic currents in electrically excitable cells (i.e., pituitary GH3 and pancreatic INS-1 cells). The exposure to Gom A led to the differential inhibition of peak and end-pulse components of voltage-gated Na+ current (INa) in GH3 cells with effective IC50 of 6.2 and 0.73 µM, respectively. The steady-state inactivation curve of INa in the presence of Gom A was shifted towards a more hyperpolarized potential. However, neither changes in the overall current-voltage relationship nor those for the gating charge of the current were demonstrated. The application of neither morin (10 µM) nor hesperidin (10 µM) perturbed the strength of INa, while sesamine could suppress it. However, in the continued presence of Gom A, the addition of sesamine failed to suppress INa further. Gom A also effectively suppressed the strength of persistent INa activated by long ramp voltage command, and further application of tefluthrin effectively attenuated Gom A-mediated inhibition of the current. The presence of Gom A mildly inhibited erg-mediated K+ current, while a lack of change in the amplitude of hyperpolarization-activated cation current was observed in its presence. Under cell-attached current recordings, the exposure to Gom A resulted in the decreased firing of spontaneous action currents with a minimal change in AC amplitude. In pancreatic INS-1 cells, the presence of Gom A was also noticed to inhibit peak and end-pulse components of INa differentially with the IC50 of 5.9 and 0.84 µM, respectively. Taken together, the emerging results presented herein provide the evidence that Gom A can differentially inhibit peak and sustained INa in endocrine cells (e.g., GH3 and INS-1 cells).


Asunto(s)
Ciclooctanos/farmacología , Dioxoles/farmacología , Lignanos/farmacología , Schisandra/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/genética , Animales , Línea Celular , Ciclooctanos/química , Dioxoles/química , Transporte Iónico/efectos de los fármacos , Cinética , Lignanos/química , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética , Ratas , Canales de Sodio Activados por Voltaje/efectos de los fármacos
14.
Toxicol Sci ; 178(2): 302-310, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010168

RESUMEN

Imipramine, a tricyclic antidepressant, is used in the treatment of depressive disorders. However, the effect of imipramine on vascular ion channels is unclear. Therefore, using a patch-clamp technique we examined the effect of imipramine on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells. Kv channels were inhibited by imipramine in a concentration-dependent manner, with an IC50 value of 5.55 ± 1.24 µM and a Hill coefficient of 0.73 ± 0.1. Application of imipramine shifted the steady-state activation curve in the positive direction, indicating that imipramine-induced inhibition of Kv channels was mediated by influencing the voltage sensors of the channels. The recovery time constants from Kv-channel inactivation were increased in the presence of imipramine. Furthermore, the application of train pulses (of 1 or 2 Hz) progressively augmented the imipramine-induced inhibition of Kv channels, suggesting that the inhibitory effect of imipramine is use (state) dependent. The magnitude of Kv current inhibition by imipramine was similar during the first, second, and third depolarizing pulses. These results indicate that imipramine-induced inhibition of Kv channels mainly occurs in the closed state. The imipramine-mediated inhibition of Kv channels was associated with the Kv1.5 channel, not the Kv2.1 or Kv7 channel. Inhibition of Kv channels by imipramine caused vasoconstriction. From these results, we conclude that imipramine inhibits vascular Kv channels in a concentration- and use (closed-state)-dependent manner by changing their gating properties regardless of its own function.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Imipramina/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Animales , Vasos Coronarios , Músculo Liso Vascular/citología , Bloqueadores de los Canales de Potasio , Conejos
15.
Mech Ageing Dev ; 192: 111389, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127441

RESUMEN

Vascular cognitive impairment, the second most common cause of dementia, profoundly affects hippocampal-dependent functions. However, while the growing literature covers complex neuronal interactions, little is known about the sustaining hippocampal microcirculation. Here we examined vasoconstriction to physiological pressures of hippocampal arterioles, a fundamental feature of small arteries, in a genetic mouse model of CADASIL, an archetypal cerebral small vessel disease. Using diameter and membrane potential recordings on isolated arterioles, we observed both blunted pressure-induced vasoconstriction and smooth muscle cell depolarization in CADASIL. This impairment was abolished in the presence of voltage-gated potassium (KV1) channel blocker 4-aminopyridine, or by application of heparin-binding EGF-like growth factor (HB-EGF), which promotes KV1 channel down-regulations. Interestingly, we observed that HB-EGF induced a depolarization of the myocyte plasma membrane within the arteriolar wall in CADASIL, but not wild-type, arterioles. Collectively, our results indicate that hippocampal arterioles in CADASIL mice display a blunted contractile response to luminal pressure, similar to the defect we previously reported in cortical arterioles and pial arteries, that is rescued by HB-EGF. Hippocampal vascular dysfunction in CADASIL could then contribute to the decreased vascular reserve associated with decreased cognitive performance, and its correction may provide a therapeutic option for treating vascular cognitive impairment.


Asunto(s)
Arteriolas , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Hipocampo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Aminopiridinas/farmacología , Animales , Arteriolas/metabolismo , Arteriolas/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Potenciales de la Membrana/fisiología , Moduladores del Transporte de Membrana/farmacología , Ratones , Microcirculación , Modelos Genéticos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
16.
Food Funct ; 11(10): 8893-8904, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32986050

RESUMEN

Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, plays an important role in regulating glucose metabolism. The aim of this study was to investigate the effect of DHA on insulin secretion and the underlying ion channel mechanism in rat pancreatic ß-cells. The insulin secretion results illustrated that DHA promoted insulin secretion in a glucose-dependent manner. Calcium-imaging analysis indicated that DHA elevated intracellular Ca2+ concentration. Using the patch-clamp technique, we found that DHA prolonged the action potential duration (APD) and significantly inhibited voltage-dependent K+ (KV) channels, but did not act directly on voltage-gated Ca2+ channels. Furthermore, our data demonstrate that the insulinotropic effect of DHA was mediated by G protein-coupled receptor 40 (GPR40) as well as the adenylyl cyclase (AC)/cyclic adenosine monophosphate (cAMP)/phospholipase-C (PLC) signaling pathway. Together, these findings illustrate that KV channels play a vital role in DHA-augmented insulin secretion through a mechanism whereby DHA blocks KV channels via GPR40 and the AC/cAMP/PLC signaling pathway in rat pancreatic ß-cells.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Hipoglucemiantes/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Animales , Masculino , Ratas , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
17.
Biochem Biophys Res Commun ; 529(2): 191-197, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703410

RESUMEN

We investigated the effect of ziprasidone, a widely used treatment for schizophrenia, on voltage-dependent K+ (Kv) channels of coronary arterial smooth muscle cells using the patch-clamp technique. Ziprasidone dose-dependently inhibited Kv channels with an IC50 value of 0.39 ± 0.06 µM and a Hill coefficient of 0.62 ± 0.03. Although ziprasidone had no effect on the steady-state inactivation kinetics of the Kv channels, the steady-state activation curve shifted towards a more positive potential. These results suggest that ziprasidone inhibits Kv channels by targeting their voltage sensors. The recovery time constant of Kv channel inactivation was increased in the presence of ziprasidone. Furthermore, application of train steps (of 1 and 2 Hz) in the presence of ziprasidone led to a progressive increase in the blockade of Kv currents, suggesting that ziprasidone-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with Kv1.5, Kv2.1, and Kv7 subtype inhibitors partially suppressed the ziprasidone-induced inhibition of Kv currents. These results suggest that ziprasidone inhibits vascular Kv channels through its effect on gating properties. The Kv channel-inhibiting action of ziprasidone is concentration- and use (state)-depedent.


Asunto(s)
Antipsicóticos/farmacología , Vasos Coronarios/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Piperazinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Tiazoles/farmacología , Animales , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Conejos
18.
Biochimie ; 176: 138-149, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717411

RESUMEN

Spider venoms, despite their toxicity, represent rich sources of pharmacologically active compounds with biotechnological potential. However, in view of the large diversity of the spider species, the full potential of their venom molecules is still far from being known. In this work, we report the purification and structural and functional characterization of GiTx1 (ß/κ-TRTX-Gi1a), the first toxin purified from the venom of the Brazilian tarantula spider Grammostola iheringi. GiTx1 was purified by chromatography, completely sequenced through automated Edman degradation and tandem mass spectrometry and its structure was predicted by molecular modeling. GiTx1 has a MW of 3.585 Da, with the following amino acid sequence: SCQKWMWTCDQKRPCCEDMVCKLWCKIIK. Pharmacological activity of GiTx1 was characterized by electrophysiology using whole-cell patch clamp on dorsal root ganglia neurons (DRG) and two-electrode voltage-clamp on voltage-gated sodium and potassium channels subtypes expressed in Xenopus laevis oocytes. GiTx1, at 2 µM, caused a partial block of inward (∼40%) and outward (∼20%) currents in DRG cells, blocked rNav1.2, rNav1.4 and mNav1.6 and had a significant effect on VdNav, an arachnid sodium channel isoform. IC50 values of 156.39 ± 14.90 nM for Nav1.6 and 124.05 ± 12.99 nM for VdNav, were obtained. In addition, this toxin was active on rKv4.3 and hERG potassium channels, but not Shaker IR or rKv2.1 potassium channels. In summary, GiTx1 is a promiscuous toxin with multiple effects on different types of ion channels.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Venenos de Araña , Arañas/química , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Moscas Domésticas , Humanos , Ratones , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Dominios Proteicos , Ratas , Ratas Wistar , Venenos de Araña/química , Venenos de Araña/aislamiento & purificación , Venenos de Araña/toxicidad , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Canales de Sodio Activados por Voltaje/química
19.
J Neuroinflammation ; 17(1): 100, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248813

RESUMEN

BACKGROUND: Microglia are essential to maintain cell homeostasis in the healthy brain and are activated after brain injury. Upon activation, microglia polarize towards different phenotypes. The course of microglia activation is complex and depends on signals in the surrounding milieu. Recently, it has been suggested that microglia respond to ion currents, as a way of regulating their activity and function. METHODS AND RESULTS: Under the hypothesis that HCN and KCNQ/Kv7 channels impact on microglia, we studied primary rat microglia in the presence or absence of specific pharmacological blockade or RNA silencing. Primary microglia expressed the subunits HCN1-4, Kv7.2, Kv7.3, and Kv7.5. The expression of HCN2, as well as Kv7.2 and Kv7.3, varied among different microglia phenotypes. The pharmacological blockade of HCN channels by ZD7288 resulted in cell depolarization with slowly rising intracellular calcium levels, leading to enhanced survival and reduced proliferation rates of resting microglia. Furthermore, ZD7288 treatment, as well as knockdown of HCN2 RNA by small interfering RNA, resulted in an attenuation of later microglia activation-both towards the anti- and pro-inflammatory phenotype. However, HCN channel inhibition enhanced the phagocytic capacity of IL4-stimulated microglia. Blockade of Kv7/KCNQ channel by XE-991 exclusively inhibited the migratory capacity of resting microglia. CONCLUSION: These observations suggest that the HCN current contributes to various microglia functions and impacts on the course of microglia activation, while the Kv7/KCNQ channels affect microglia migration. Characterizing the role of HCN channels in microglial functioning may offer new therapeutic approaches for targeted modulation of neuroinflammation as a hallmark of various neurological disorders.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Microglía/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Microglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética , Pirimidinas/farmacología , Interferencia de ARN , Ratas , Ratas Wistar
20.
Toxicol Mech Methods ; 30(5): 358-369, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32193973

RESUMEN

The stilbene derivative, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), an anion channel blocker is used in the present study to evaluate its modulatory effect on voltage-gated K+ current (IK) in human prostate cancer cell lines (LNCaP and PC-3). Voltage-gated K+ (KV) channels in the plasma membrane are critically involved in the proliferation of tumor cells. Therefore, KV channels are considered as a novel potential target for cancer treatment. The results of the present study show that the external perfusion of DIDS activates IK in a concentration-dependent manner, although the known K+ channel blocker TEA failed to block the DIDS activated IK in PC-3 cells. Whereas, in LNCaP cells, the higher concentration of DIDS blocked IK, though this effect was not completely recovered after washout. The difference in function of DIDS might be due to the expression of different Kv channel isoforms in LNCaP and PC-3 cells. Further, the anticancer studies show that treatment of DIDS significantly induced G2/M phase cell cycle arrest and induced moderate and low level of cell death in LNCaP and PC-3 cells respectively. This finding reveals that DIDS modulates IK and exerts cell cycle arrest and cell death in LNCaP and PC-3 cells.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Neoplasias de la Próstata , Receptores Androgénicos/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Células PC-3 , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Próstata/efectos de los fármacos , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Tetraetilamonio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA