Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.078
Filtrar
1.
Int J Med Sci ; 21(10): 1964-1975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113882

RESUMEN

Endothelial dysfunction may contribute to pathogenesis of Takotsubo cardiomyopathy, but mechanism underlying endothelial dysfunction in the setting of catecholamine excess has not been clarified. The study reports that D1/D5 dopamine receptor signaling and small conductance calcium-activated potassium channels contribute to high concentration catecholamine induced endothelial cell dysfunction. For mimicking catecholamine excess, 100 µM epinephrine (Epi) was used to treat human cardiac microvascular endothelial cells. Patch clamp, FACS, ELISA, PCR, western blot and immunostaining analyses were performed in the study. Epi enhanced small conductance calcium-activated potassium channel current (ISK1-3) without influencing the channel expression and the effect was attenuated by D1/D5 receptor blocker. D1/D5 agonists mimicked the Epi effect, suggesting involvement of D1/D5 receptors in Epi effects. The enhancement of ISK1-3 caused by D1/D5 activation involved roles of PKA, ROS and NADPH oxidases. Activation of D1/D5 and SK1-3 channels caused a hyperpolarization, reduced NO production and increased ROS production. The NO reduction was membrane potential independent, while ROS production was increased by the hyperpolarization. ROS (H2O2) suppressed NO production. The study demonstrates that high concentration catecholamine can activate D1/D5 and SK1-3 channels through NADPH-ROS and PKA signaling and reduce NO production, which may facilitate vasoconstriction in the setting of catecholamine excess.


Asunto(s)
Células Endoteliales , Epinefrina , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Catecolaminas/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Endotelio Vascular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , NADPH Oxidasas/metabolismo , Receptores de Dopamina D5/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230222, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853550

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) play a pivotal role in synaptic plasticity. While the functional role of post-synaptic NMDARs is well established, pre-synaptic NMDAR (pre-NMDAR) function is largely unexplored. Different pre-NMDAR subunit populations are documented at synapses, suggesting that subunit composition influences neuronal transmission. Here, we used electrophysiological recordings at Schaffer collateral-CA1 synapses partnered with Ca2+ imaging and glutamate uncaging at boutons of CA3 pyramidal neurones to reveal two populations of pre-NMDARs that contain either the GluN2A or GluN2B subunit. Activation of the GluN2B population decreases action potential-evoked Ca2+ influx via modulation of small-conductance Ca2+-activated K+ channels, while activation of the GluN2A population does the opposite. Critically, the level of functional expression of the subunits is subject to homeostatic regulation, bidirectionally affecting short-term facilitation, thus providing a capacity for a fine adjustment of information transfer. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Potenciales de Acción , Calcio , Receptores de N-Metil-D-Aspartato , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción/fisiología , Calcio/metabolismo , Ratas , Sinapsis/fisiología , Sinapsis/metabolismo , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Células Piramidales/metabolismo
3.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891076

RESUMEN

Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Mesencéfalo , Proteómica , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteómica/métodos , Neuronas Dopaminérgicas/metabolismo , Animales , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Mesencéfalo/metabolismo , Humanos , Canales de Calcio Tipo L/metabolismo , Ratones , Sustancia Negra/metabolismo
4.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920682

RESUMEN

Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.


Asunto(s)
Amígdala del Cerebelo , Epigénesis Genética , Neuralgia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Masculino , Ratas , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Conducta Animal/efectos de los fármacos , Metilación de ADN/genética , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
5.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916998

RESUMEN

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Asunto(s)
Dolor Crónico , Parvalbúminas , Parvalbúminas/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Potenciales de Acción/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
6.
Microvasc Res ; 155: 104699, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38901735

RESUMEN

Patients with Takotsubo syndrome displayed endothelial dysfunction, but underlying mechanisms have not been fully clarified. This study aimed to explore molecular signalling responsible for catecholamine excess induced endothelial dysfunction. Human cardiac microvascular endothelial cells were challenged by epinephrine to mimic catecholamine excess. Patch clamp, FACS, ELISA, PCR, and immunostaining were employed for the study. Epinephrine (Epi) enhanced small conductance calcium-activated potassium channel current (ISK1-3) through activating α1 adrenoceptor. Phenylephrine enhanced edothelin-1 (ET-1) and reactive oxygen species (ROS) production, and the effects involved contribution of ISK1-3. H2O2 enhanced ISK1-3 and ET-1 production. Enhancing ISK1-3 caused a hyperpolarization, which increases ROS and ET-1 production. BAPTA partially reduced phenylephrine-induced enhancement of ET-1 and ROS, suggesting that α1 receptor activation can enhance ROS/ET-1 generation in both calcium-dependent and calcium-independent ways. The study demonstrates that high concentration catecholamine can activate SK1-3 channels through α1 receptor-ROS signalling and increase ET-1 production, facilitating vasoconstriction.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 1 , Células Endoteliales , Epinefrina , Especies Reactivas de Oxígeno , Receptores Adrenérgicos alfa 1 , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Vasoconstricción , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Vasoconstricción/efectos de los fármacos , Células Cultivadas , Epinefrina/farmacología , Peróxido de Hidrógeno/metabolismo , Potenciales de la Membrana , Fenilefrina/farmacología , Estrés Oxidativo/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Canales de Potasio Éter-A-Go-Go
7.
Neuropharmacology ; 252: 109960, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631563

RESUMEN

Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.


Asunto(s)
Hipocampo , Ratones Endogámicos C57BL , Pirazoles , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Tiazoles/farmacología , Indoles/farmacología , Pirimidinas/farmacología , Memoria/efectos de los fármacos , Memoria/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología
8.
J Lipid Res ; 65(5): 100544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642894

RESUMEN

SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Movimiento Celular , MicroARNs/metabolismo , MicroARNs/genética , Lípidos/química , Línea Celular Tumoral , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética
9.
Mol Oncol ; 18(8): 1853-1865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38480668

RESUMEN

No data are currently available on the functional role of small conductance Ca2+-activated K+ channels (SKCa) in ovarian cancer. Here, we characterized the role of SK2 (KCa2.2) in ovarian cancer cell migration and chemosensitivity. Using the selective non-cell-permeant SK2 inhibitor Lei-Dab7, we identified functional SK2 channels at the plasma membrane, regulating store-operated Ca2+ entry (SOCE) in both cell lines tested (COV504 and OVCAR3). Silencing KCNN2 with short interfering RNA (siRNA), or blocking SK2 activity with Lei-Dab7, decreased cell migration. The more robust effect of KCNN2 knockdown compared to Lei-Dab7 treatment suggested the involvement of functional intracellular SK2 channels in both cell lines. In cells treated with lysophosphatidic acid (LPA), an ovarian cancer biomarker of progression, SK2 channels are a key player of LPA pro-migratory activity but their role in SOCE is abolished. Concerning chemotherapy, SK2 inhibition increased chemoresistance to Taxol® and low KCNN2 mRNA expression was associated with the worst prognosis for progression-free survival in patients with serous ovarian cancer. The dual roles of SK2 mean that SK2 activators could be used as an adjuvant chemotherapy to potentiate treatment efficacy and SK2 inhibitors could be administrated as monotherapy to limit cancer cell dissemination.


Asunto(s)
Membrana Celular , Movimiento Celular , Neoplasias Ováricas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Resistencia a Antineoplásicos/genética , Lisofosfolípidos/metabolismo , Calcio/metabolismo
10.
Addict Biol ; 29(2): e13375, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380802

RESUMEN

Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Epigénesis Genética , Células HEK293 , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
11.
J Biol Chem ; 300(3): 105735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336298

RESUMEN

One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.


Asunto(s)
Diabetes Mellitus Experimental , Atrios Cardíacos , Proteínas Musculares , FN-kappa B , Especies Reactivas de Oxígeno , Proteínas Ligasas SKP Cullina F-box , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Ratones , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Línea Celular , Inmunoprecipitación de Cromatina , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Peróxido de Hidrógeno/farmacología , Hiperglucemia/genética , Hiperglucemia/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio , Miocitos Cardíacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
12.
J Am Heart Assoc ; 13(3): e031028, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293916

RESUMEN

BACKGROUND: Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS: SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCß knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCß inhibitor LY333531. NADH (30-300 µmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCß small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCß expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCß inhibitor LY333531. CONCLUSIONS: NADH-induced inhibition of endothelial SK channel function is mediated via PKCß. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.


Asunto(s)
Diabetes Mellitus , Forboles , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Proteína Quinasa C beta/metabolismo , Proteína Quinasa C beta/farmacología , Células Endoteliales/metabolismo , Miristatos/metabolismo , Miristatos/farmacología , NAD/metabolismo , Vasodilatación/fisiología , Diabetes Mellitus/metabolismo , Endotelio Vascular/metabolismo , ARN Interferente Pequeño/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Forboles/metabolismo , Forboles/farmacología
13.
Biomed Pharmacother ; 171: 116163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242037

RESUMEN

Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.


Asunto(s)
Ferroptosis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo
14.
Synapse ; 78(1): e22283, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837643

RESUMEN

Small conductance calcium-activated potassium (SK) channels are well-known regulators of neuronal excitability. In the thalamic hub, SK2 channels act as pacemakers of thalamic reticular neurons, which play a key role in the thalamocortical circuit. Several disease-linked genes are highly enriched in these neurons, including genes known to be associated with schizophrenia and attentional disorders, which could affect neuronal firing. The present study assessed the effect of pharmacological modulation of SK channels in the firing pattern and intrinsic properties of thalamic reticular neurons by performing whole cell patch clamp recordings in brain slices. Two SK positive allosteric modulators and one negative allosteric modulator were used: CyPPA, NS309, and NS8593, respectively. By acting on the burst afterhyperpolarization (AHP), negative modulation of SK channels resulted in increased action potential (AP) firing, increased burst duration, and decreased intervals between bursts. Conversely, both CyPPA and NS309 increased the afterburst AHP, prolonging the interburst interval, which additionally resulted in reduced AP firing in the case of NS309. Alterations in SK channel activity would be expected to alter functioning of thalamocortical circuits. Targeting SK channels could be promising in treating disorders involving thalamic reticular dysfunction such as psychiatric and neurodevelopmental disorders.


Asunto(s)
Neuronas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Potenciales de Acción , Núcleos Talámicos
15.
Eur J Neurosci ; 59(1): 3-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018635

RESUMEN

The expression of IKCa (SK4) channel subunits overlaps with that of SK channel subunits, and it has been proposed that the two related subunits prefer to co-assemble to form heteromeric hSK1:hIKCa channels. This implicates hSK1:hIKCa heteromers in physiological roles that might have been attributed to activation of SK channels. We have used a mutation approach to confirm formation of heterometric hSK1:hIKCa channels. Introduction of residues within hSK1 that were predicted to impart sensitivity to the hIKCa current blocker TRAM-34 changed the pharmacology of functional heteromers. Heteromeric channels formed between wildtype hIKCa and mutant hSK1 subunits displayed a significantly higher sensitivity and maximum block to addition of TRAM-34 than heteromers formed between wildtype subunits. Heteromer formation was disrupted by a single point mutation within one COOH-terminal coiled-coil domain of the hIKCa channel subunit. This mutation only disrupted the formation of hSK1:hIKCa heteromeric channels, without affecting the formation of homomeric hIKCa channels. Finally, the Ca2+ gating sensitivity of heteromeric hSK1:hIKCa channels was found to be significantly lower than the Ca2+ gating sensitivity of homomeric hIKCa channels. These data confirmed the preferred formation of heteromeric channels that results from COOH-terminal interactions between subunits. The distinct sensitivity of the heteromer to activation by Ca2+ suggests that heteromeric channels fulfil a distinct function within those neurons that express both subunits.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Neuronas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Mutación , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología
16.
Transl Psychiatry ; 13(1): 364, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012158

RESUMEN

The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.


Asunto(s)
Alcoholismo , Epigénesis Genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Ratones , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Núcleo Accumbens , Haplorrinos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
17.
Carcinogenesis ; 44(12): 809-823, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37831636

RESUMEN

Potassium Calcium-Activated Channel Subfamily N1 (KCNN1), an integral membrane protein, is thought to regulate neuronal excitability by contributing to the slow component of synaptic after hyperpolarization. However, the role of KCNN1 in tumorigenesis has been rarely reported, and the underlying molecular mechanism remains unclear. Here, we report that KCNN1 functions as an oncogene in promoting breast cancer cell proliferation and metastasis. KCNN1 was overexpressed in breast cancer tissues and cells. The pro-proliferative and pro-metastatic effects of KCNN1 were demonstrated by CCK8, clone formation, Edu assay, wound healing assay and transwell experiments. Transcriptomic analysis using KCNN1 overexpressing cells revealed that KCNN1 could regulate key signaling pathways affecting the survival of breast cancer cells. KCNN1 interacts with ERLIN2 and enhances the effect of ERLIN2 on Cyclin B1 stability. Overexpression of KCNN1 promoted the protein expression of Cyclin B1, enhanced its stability and promoted its K63 dependent ubiquitination, while knockdown of KCNN1 had the opposite effects on Cyclin B1. Knockdown (or overexpression) ERLNI2 partially restored Cyclin B1 stability and K63 dependent ubiquitination induced by overexpression (or knockdown) of KCNN1. Knockdown (or overexpression) ERLIN2 also partially neutralizes the effects of overexpression (or knockdown) KCNN1-induced breast cancer cell proliferation, migration and invasion. In paired breast cancer clinical samples, we found a positive expression correlations between KCNN1 and ERLIN2, KCNN1 and Cyclin B1, as well as ERLIN2 and Cyclin B1. In conclusion, this study reveals, for the first time, the role of KCNN1 in tumorigenesis and emphasizes the importance of KCNN1/ERLIN2/Cyclin B1 axis in the development and metastasis of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Ciclina B1/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Ubiquitinación
19.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667839

RESUMEN

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Asunto(s)
Bradiquinina , Carbamatos , Fenilendiaminas , Humanos , Bradiquinina/farmacología , Dolor Abdominal , Adenosina Trifosfato/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
20.
J Mol Cell Cardiol ; 183: 70-80, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37704101

RESUMEN

BACKGROUND: The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM: To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS: Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS: In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 µM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 µM ICAGEN (at [Ca2+]i âˆ¼ 100-450 nM), nor 100 nM apamin ([Ca2+]i âˆ¼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 µM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 µM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 µM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION: ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.


Asunto(s)
Fibrilación Atrial , Miocitos Cardíacos , Animales , Humanos , Conejos , Miocitos Cardíacos/efectos de los fármacos , Apamina/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Atrios Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA