Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.858
Filtrar
1.
Methods Mol Biol ; 2796: 157-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856901

RESUMEN

Kir channels are potassium (K+) channels responsible for the mechanism of inward rectification, which plays a fundamental role in maintaining the resting membrane potential. There are seven Kir subfamilies, and their opening and closing mechanism is regulated by different regulatory factors. Genetically inherited defects in Kir channels are responsible for several rare human diseases, and for most of them, there are currently no effective therapeutic treatments. High-resolution structural information is not available for several members within the Kir subfamilies. Recently, our group achieved a significant breakthrough by utilizing cryo-EM single-particle analysis to elucidate the first structure of the human Kir2.1 channel. We present here the data processing protocol of the cryo-EM data of the human Kir2.1 channel, which is applicable to the structural determination of other ion channels by cryo-EM single-particle analysis. We also introduce a protocol designed to assess the structural heterogeneity within the cryo-EM data, allowing for the identification of other possible protein structure conformations present in the collected data. Moreover, we present a protocol for conducting all-atom molecular dynamics (MD) simulations for K+ channels, which can be incorporated into various membrane models to simulate different environments. We also propose some methods for analyzing the MD simulations, with a particular emphasis on assessing the local mobility of protein residues.


Asunto(s)
Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Canales de Potasio de Rectificación Interna , Microscopía por Crioelectrón/métodos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Humanos , Conformación Proteica
2.
Methods Mol Biol ; 2796: 191-210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856903

RESUMEN

ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.


Asunto(s)
Canales KATP , Rubidio , Canales KATP/metabolismo , Canales KATP/genética , Humanos , Rubidio/metabolismo , Receptores de Sulfonilureas/metabolismo , Receptores de Sulfonilureas/genética , Animales , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética
3.
Methods Mol Biol ; 2796: 229-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856905

RESUMEN

Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.


Asunto(s)
Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna , Receptor de Melanocortina Tipo 4 , Técnicas de Placa-Clamp/métodos , Animales , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293
4.
BMC Pulm Med ; 24(1): 240, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750544

RESUMEN

BACKGROUND: Previous research has emphasized the potential benefits of anti-diabetic medications in inhibiting the exacerbation of Chronic Obstructive Pulmonary Disease (COPD), yet the role of anti-diabetic drugs on COPD risk remains uncertain. METHODS: This study employed a Mendelian randomization (MR) approach to evaluate the causal association of genetic variations related to six classes of anti-diabetic drug targets with COPD. The primary outcome for COPD was obtained from the Global Biobank Meta-analysis Initiative (GBMI) consortium, encompassing a meta-analysis of 12 cohorts with 81,568 cases and 1,310,798 controls. Summary-level data for HbA1c was derived from the UK Biobank, involving 344,182 individuals. Positive control analysis was conducted for Type 2 Diabetes Mellitus (T2DM) to validate the choice of instrumental variables. The study applied Summary-data-based MR (SMR) and two-sample MR for effect estimation and further adopted colocalization analysis to verify evidence of genetic variations. RESULTS: SMR analysis revealed that elevated KCNJ11 gene expression levels in blood correlated with reduced COPD risk (OR = 0.87, 95% CI = 0.79-0.95; p = 0.002), whereas an increase in DPP4 expression corresponded with an increased COPD incidence (OR = 1.18, 95% CI = 1.03-1.35; p = 0.022). Additionally, the primary method within MR analysis demonstrated a positive correlation between PPARG-mediated HbA1c and both FEV1 (OR = 1.07, 95% CI = 1.02-1.13; P = 0.013) and FEV1/FVC (OR = 1.08, 95% CI = 1.01-1.14; P = 0.007), and a negative association between SLC5A2-mediated HbA1c and FEV1/FVC (OR = 0.86, 95% CI = 0.74-1.00; P = 0.045). No colocalization evidence with outcome phenotypes was detected (all PP.H4 < 0.7). CONCLUSION: This study provides suggestive evidence for anti-diabetic medications' role in improving COPD and lung function. Further updated MR analyses are warranted in the future, following the acquisition of more extensive and comprehensive data, to validate our results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Análisis de la Aleatorización Mendeliana , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hemoglobina Glucada , Canales de Potasio de Rectificación Interna/genética , Variación Genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
5.
Nat Commun ; 15(1): 4540, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811542

RESUMEN

Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Luz , Estomas de Plantas , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791571

RESUMEN

Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.


Asunto(s)
Hiperinsulinismo Congénito , Heterogeneidad Genética , Hipoglucemia , Mutación , Fenotipo , Receptores de Sulfonilureas , Humanos , Hiperinsulinismo Congénito/genética , Receptores de Sulfonilureas/genética , Femenino , Recién Nacido , Masculino , Hipoglucemia/genética , Lactante , Canales de Potasio de Rectificación Interna/genética
8.
J Med Chem ; 67(11): 9731-9744, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38807539

RESUMEN

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.


Asunto(s)
Insuficiencia Cardíaca , Bloqueadores de los Canales de Potasio , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Ratas , Bloqueadores de los Canales de Potasio/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacocinética , Bloqueadores de los Canales de Potasio/síntesis química , Relación Estructura-Actividad , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Descubrimiento de Drogas , Diuresis/efectos de los fármacos , Piperazinas/farmacología , Piperazinas/química , Piperazinas/uso terapéutico , Piperazinas/síntesis química , Piperazinas/farmacocinética , Masculino , Ratas Sprague-Dawley
9.
Cell Stem Cell ; 31(4): 519-536.e8, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579683

RESUMEN

Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.


Asunto(s)
Esclerosis Amiotrófica Lateral , Lesiones Traumáticas del Encéfalo , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Canales de Potasio de Rectificación Interna , Humanos , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Proteína C9orf72/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/etiología , Demencia Frontotemporal/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo
10.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575153

RESUMEN

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Asunto(s)
Hiperinsulinismo Congénito , Canales de Potasio de Rectificación Interna , Lactante , Adulto , Animales , Ratones , Humanos , Canales KATP/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Canales de Potasio de Rectificación Interna/genética , Hiperinsulinismo Congénito/genética , Insulina/metabolismo , Glucosa , Adenosina Trifosfato
11.
Biomolecules ; 14(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672523

RESUMEN

Andersen-Tawil syndrome (ATS) is a multisystem channelopathy characterized by periodic paralysis, ventricular arrhythmias, prolonged QT interval, and facial dysmorphisms occurring in the first/second decade of life. High phenotypic variability and incomplete penetrance of the genes causing the disease make its diagnosis still a challenge. We describe a three-generation family with six living individuals affected by ATS. The proband is a 37-year-old woman presenting since age 16, with episodes of muscle weakness and cramps in the pre-menstrual period. The father, two brothers, one paternal uncle and one cousin also complained of cramps, muscle stiffness, and weakness. Despite normal serum potassium concentration, treatment with potassium, magnesium, and acetazolamide alleviated paralysis attacks suggesting a dyskalemic syndrome. Dysmorphic features were noted in the proband, only later. On the ECG, all but one had normal QT intervals. The affected males developed metabolic syndrome or obesity. The father had two myocardial infarctions and was implanted with an intracardiac cardioverter defibrillator (ICD). A genetic investigation by WES analysis detected the heterozygous pathogenic variant (NM_000891.2: c.652C>T, p. Arg218Trp) in the KCNJ2 gene related to ATS, confirmed by segregation studies in all affected members. Furthermore, we performed a review of cases with the same mutation in the literature, looking for similarities and divergences with our family case.


Asunto(s)
Alelos , Síndrome de Andersen , Fenotipo , Canales de Potasio de Rectificación Interna , Adulto , Femenino , Humanos , Masculino , Síndrome de Andersen/genética , Mutación , Linaje , Canales de Potasio de Rectificación Interna/genética
12.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570597

RESUMEN

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Abejas/genética , Canales de Potasio de Rectificación Interna/genética , Potenciales de la Membrana/fisiología , Potasio , Clonación Molecular , Isoformas de Proteínas/genética , Cesio
13.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675722

RESUMEN

Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein-protein interactions, Kir6.2 function, and case-control studies.


Asunto(s)
Diabetes Mellitus , Simulación de Dinámica Molecular , Canales de Potasio de Rectificación Interna , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/química , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Mutación , Predisposición Genética a la Enfermedad , Sitios de Unión , Unión Proteica
14.
Am J Physiol Cell Physiol ; 326(5): C1543-C1555, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586877

RESUMEN

Obesity imposes deficits on adipose tissue and vascular endothelium, yet the role that distinct adipose depots play in mediating endothelial dysfunction in local arteries remains unresolved. We recently showed that obesity impairs endothelial Kir2.1 channels, mediators of nitric oxide production, in arteries of visceral adipose tissue (VAT), while Kir2.1 function in subcutaneous adipose tissue (SAT) endothelium remains intact. Therefore, we determined if VAT versus SAT from lean or diet-induced obese mice affected Kir2.1 channel function in vitro. We found that VAT from obese mice reduces Kir2.1 function without altering channel expression whereas AT from lean mice and SAT from obese mice had no effect on Kir2.1 function as compared to untreated control cells. As Kir2.1 is well known to be inhibited by fatty acid derivatives and obesity is strongly associated with elevated circulating fatty acids, we next tested the role of the fatty acid translocase CD36 in mediating VAT-induced Kir2.1 dysfunction. We found that the downregulation of CD36 restored Kir2.1 currents in endothelial cells exposed to VAT from obese mice. In addition, endothelial cells exposed to VAT from obese mice exhibited a significant increase in CD36-mediated fatty acid uptake. The importance of CD36 in obesity-induced endothelial dysfunction of VAT arteries was further supported in ex vivo pressure myography studies where CD36 ablation rescued the endothelium-dependent response to flow via restoring Kir2.1 and endothelial nitric oxide synthase function. These findings provide new insight into the role of VAT in mediating obesity-induced endothelial dysfunction and suggest a novel role for CD36 as a mediator of endothelial Kir2.1 impairment.NEW & NOTEWORTHY Our findings suggest a role for visceral adipose tissue (VAT) in the dysfunction of endothelial Kir2.1 in obesity. We further reveal a role for CD36 as a major contributor to VAT-mediated Kir2.1 and endothelial dysfunction, suggesting that CD36 offers a potential target for preventing the early development of obesity-associated cardiovascular disease.


Asunto(s)
Antígenos CD36 , Células Endoteliales , Grasa Intraabdominal , Ratones Endogámicos C57BL , Obesidad , Canales de Potasio de Rectificación Interna , Animales , Ratones , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Grasa Intraabdominal/metabolismo , Ratones Obesos , Obesidad/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Grasa Subcutánea/metabolismo
15.
Nat Commun ; 15(1): 3583, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678030

RESUMEN

Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.


Asunto(s)
Astrocitos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Neuronas , Canales de Potasio de Rectificación Interna , Animales , Masculino , Ratones , Astrocitos/metabolismo , Conducta Animal , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
16.
J Struct Biol ; 216(2): 108091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641256

RESUMEN

Cholesterol is a negative regulator of a variety of ion channels. We have previously shown that cholesterol suppresses Kir2.2 channels via residue-residue uncoupling on the inter-subunit interfaces within the close state of the channels (3JYC). In this study, we extend this analysis to the other known structure of Kir2.2 that is closer to the open state of Kir2.2 channels (3SPI) and provide additional analysis of the residue distances between the uncoupled residues and cholesterol binding domains in the two conformation states of the channels. We found that the general phenomenon of cholesterol binding leading to uncoupling between specific residues is conserved in both channel states but the specific pattern of the uncoupling residues is distinct between the two states and implies different mechanisms. Specifically, we found that cholesterol binding in the 3SPI state results in an uncoupling of residues in three distinct regions; the transmembrane domain, membrane-cytosolic interface, and the cytosolic domain, with the first two regions forming an envelope around PI(4,5)P2 and cholesterol binding sites and the distal region overlapping with the subunit-subunit interface characterized in our previous study of the disengaged state. We also found that this uncoupling is dependent upon the number of cholesterol molecules bound to the channel. We further generated a mutant channel Kir2.2P187V with a single point mutation in a residue proximal to the PI(4,5)P2 binding site, which is predicted to be uncoupled from other residues in its vicinity upon cholesterol binding and found that this mutation abrogates the sensitivity of Kir2.2 to cholesterol changes in the membrane. These findings suggest that cholesterol binding to this conformation state of Kir2.2 channels may destabilize the PI(4,5)P2 interactions with the channels while in the disengaged state the destabilization occurs where the subunits interact. These findings give insight into the structural mechanistic basis for the functional effects of cholesterol binding to the Kir2.2 channel.


Asunto(s)
Colesterol , Canales de Potasio de Rectificación Interna , Unión Proteica , Colesterol/metabolismo , Colesterol/química , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Sitios de Unión , Animales , Humanos , Conformación Proteica
17.
Nat Commun ; 15(1): 2502, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509107

RESUMEN

ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic ß-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.


Asunto(s)
Diabetes Mellitus , Canales de Potasio de Rectificación Interna , Recién Nacido , Humanos , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sitios de Unión , Adenosina Trifosfato/metabolismo , Canales KATP/genética , Canales KATP/metabolismo
18.
Mov Disord ; 39(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436103

RESUMEN

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Mutación Missense , Canales de Potasio de Rectificación Interna , Humanos , Masculino , Mutación Missense/genética , Femenino , Canales de Potasio de Rectificación Interna/genética , Adulto , Adolescente , Niño , Distonía/genética , Adulto Joven , Linaje , Persona de Mediana Edad , Secuenciación del Exoma , Preescolar
19.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530364

RESUMEN

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Asunto(s)
Ácidos Docosahexaenoicos , Ganglios Espinales , Neuroglía , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ganglios Espinales/metabolismo , Homeostasis , Ratones Noqueados , Ratones Transgénicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patología , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Channels (Austin) ; 18(1): 2327708, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38489043

RESUMEN

KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.


Asunto(s)
Canales de Potasio de Rectificación Interna , Receptores de Sulfonilureas/genética , Canales de Potasio de Rectificación Interna/metabolismo , Potenciales de la Membrana , Adenosina Trifosfato/metabolismo , Canales KATP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA