RESUMEN
Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a â¼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.
Asunto(s)
ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Humanos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas NuclearesRESUMEN
RNA binding proteins (RBPs) are responsible for facilitating a wealth of post-transcriptional gene regulatory functions. The role of an RBP on regulated transcripts can be investigated through a pull-down of the RBP and high-throughput sequencing (HTS) of the associated transcripts. Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), is one such pull-down method that isolates, detects, and sequences the cDNA of RBP-associated transcripts. PAR-CLIP relies on a photoactivatable ribonucleoside analogue, 4-thiouridine, to facilitate covalent RNA-protein crosslinks at 365 nm. These crosslinks permit stringent wash conditions and result in T to C mismatch incorporations during reverse transcription, a unique parameter for the computational analysis of high-confidence binding sites. However, until now, RBPs that bind at the 5'-termini of RNAs have been uniquely restricted from the full potential bandwidth of autoradiographic detection and HTS library preparation. The 5'-termini of RNAs are highly modified, including the most common Pol-II derived modification: the 7-methylguanosine (m7G) cap. In the conventional PAR-CLIP protocol, cap-binding proteins protect the m7G cap from the RNase treatment that generates the necessary substrate for autoradiographic detection and 5' adapter ligation-thus occluding entire populations of RNA from visualization and HTS. Here, we introduce decapping-PAR-CLIP or PAR-dCLIP. We incorporate a decapping step into the PAR-CLIP protocol to generate the necessary substrate to sequence m7G capped transcripts. While PAR-dCLIP was originally targeted towards known m7G-cap binding proteins, we argue that all RBP inquiries, and particularly those suspected to regulate translation, should incorporate this decapping step to ensure that all possible populations of bound transcripts are identified.
Asunto(s)
Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Inmunoprecipitación/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Tiouridina/metabolismo , Tiouridina/química , Tiouridina/análogos & derivados , Reactivos de Enlaces Cruzados/química , Sitios de Unión , ARN Mensajero/genética , ARN Mensajero/metabolismo , Unión ProteicaRESUMEN
The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.
Asunto(s)
Análogos de Caperuza de ARN , ARN Mensajero , Animales , Análogos de Caperuza de ARN/síntesis química , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Ratones , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , COVID-19/virología , Biosíntesis de Proteínas/efectos de los fármacos , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/química , Polifosfatos/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genéticaRESUMEN
Eukaryotic gene expression is regulated at the transcriptional and post-transcriptional levels, with disruption of regulation contributing significantly to human diseases. The 5' m7G mRNA cap is a central node in post-transcriptional regulation, participating in both mRNA stabilization and translation efficiency. In mammals, DCP1a and DCP1b are paralogous cofactor proteins of the mRNA cap hydrolase DCP2. As lower eukaryotes have a single DCP1 cofactor, the functional advantages gained by this evolutionary divergence remain unclear. We report the first functional dissection of DCP1a and DCP1b, demonstrating that they are non-redundant cofactors of DCP2 with unique roles in decapping complex integrity and specificity. DCP1a is essential for decapping complex assembly and interactions between the decapping complex and mRNA cap-binding proteins. DCP1b is essential for decapping complex interactions with protein degradation and translational machinery. DCP1a and DCP1b impact the turnover of distinct mRNAs. The observation that different ontological groups of mRNA molecules are regulated by DCP1a and DCP1b, along with their non-redundant roles in decapping complex integrity, provides the first evidence that these paralogs have qualitatively distinct functions.
Asunto(s)
Endorribonucleasas , Caperuzas de ARN , Estabilidad del ARN , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Estabilidad del ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Células HEK293 , Biosíntesis de Proteínas , Unión Proteica , Regulación de la Expresión Génica , TransactivadoresRESUMEN
HIV-1 transcript function is controlled in part by twinned transcriptional start site usage, where 5' capped RNAs beginning with a single guanosine (1G) are preferentially packaged into progeny virions as genomic RNA (gRNA) whereas those beginning with three sequential guanosines (3G) are retained in cells as mRNAs. In 3G transcripts, one of the additional guanosines base pairs with a cytosine located within a conserved 5' polyA element, resulting in formation of an extended 5' polyA structure as opposed to the hairpin structure formed in 1G RNAs. To understand how this remodeling influences overall transcript function, we applied in vitro biophysical studies with in-cell genome packaging and competitive translation assays to native and 5' polyA mutant transcripts generated with promoters that differentially produce 1G or 3G RNAs. We identified mutations that stabilize the 5' polyA hairpin structure in 3G RNAs, which promote RNA dimerization and Gag binding without sequestering the 5' cap. None of these 3G transcripts were competitively packaged, confirming that cap exposure is a dominant negative determinant of viral genome packaging. For all RNAs examined, conformations that favored 5' cap exposure were both poorly packaged and more efficiently translated than those that favored 5' cap sequestration. We propose that structural plasticity of 5' polyA and other conserved RNA elements place the 5' leader on a thermodynamic tipping point for low-energetic (~3 kcal/mol) control of global transcript structure and function.
Asunto(s)
Genoma Viral , VIH-1 , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Viral , VIH-1/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Viral/química , Humanos , Empaquetamiento del Genoma Viral , Mutación , Ensamble de Virus/genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Non-segmented negative-strand (NNS) RNA viruses, such as rabies, Nipah and Ebola, produce 5'-capped and 3'-polyadenylated mRNAs resembling higher eukaryotic mRNAs. Here, we developed a transcription elongation-coupled pre-mRNA capping system for vesicular stomatitis virus (VSV, a prototypic NNS RNA virus). Using this system, we demonstrate that the single-polypeptide RNA-dependent RNA polymerase (RdRp) large protein (L) catalyzes all pre-mRNA modifications co-transcriptionally in the following order: (i) 5'-capping (polyribonucleotidylation of GDP) to form a GpppA cap core structure, (ii) 2'-O-methylation of GpppA into GpppAm, (iii) guanine-N7-methylation of GpppAm into m7GpppAm (cap 1), (iv) 3'-polyadenylation to yield a poly(A) tail. The GDP polyribonucleotidyltransferase (PRNTase) domain of L generated capped pre-mRNAs of 18 nucleotides or longer via the formation of covalent enzyme-pre-mRNA intermediates. The single methyltransferase domain of L sequentially methylated the cap structure only when pre-mRNAs of 40 nucleotides or longer were associated with elongation complexes. These results suggest that the formation of pre-mRNA closed loop structures in elongation complexes via the RdRp and PRNTase domains followed by the RdRp and MTase domains on the same polypeptide is required for the cap 1 formation during transcription. Taken together, our findings indicate that NNS RNA virus L acts as an all-in-one viral mRNA assembly machinery.
Asunto(s)
Caperuzas de ARN , ARN Mensajero , ARN Viral , Proteínas Virales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , Proteínas Virales/metabolismo , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Metilación , Vesiculovirus/genética , Precursores del ARN/metabolismo , Precursores del ARN/genética , Transcripción Genética , Procesamiento Postranscripcional del ARN , Animales , Poliadenilación , Elongación de la Transcripción GenéticaRESUMEN
RNA methylation adjacent to the 5' cap plays a critical role in controlling mRNA stability and protein synthesis. In trypanosomes the 5'-terminus of mRNA is protected by hypermethylated cap 4. Trypanosomes encode a cytoplasmic recapping enzyme TbCe1 which possesses an RNA kinase and guanylyltransferase activities that can convert decapped 5'-monophosphate-terminated pRNA into GpppRNA. Here, we demonstrated that the RNA kinase activity is stimulated by two orders of magnitude on a hypermethylated pRNA derived from cap 4. The N6, N6-2'-O trimethyladenosine modification on the first nucleotide was primarily accountable for enhancing both the RNA kinase and the guanylyltransferase activity of TbCe1. In contrast, N6 methyladenosine severely inhibits the guanylyltransferase activity of the mammalian capping enzyme. Furthermore, we showed that TbCmt1 cap (guanine N7) methyltransferase was localized in the cytoplasm, and its activity was also stimulated by hypermethylation at 2'-O ribose, suggesting that TbCe1 and TbCmt1 act together as a recapping enzyme to regenerate translatable mRNA from decapped mRNA. Our result establishes the functional role of cap 4 hypermethylation in recruitment and activation of mRNA recapping pathway. Methylation status at the 5'-end of transcripts could serve as a chemical landmark to selectively regulate the level of functional mRNA by recapping enzymes.
Asunto(s)
Nucleotidiltransferasas , Proteínas Protozoarias , Caperuzas de ARN , ARN Mensajero , Trypanosoma brucei brucei , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Trypanosoma brucei brucei/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metilación , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Citoplasma/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genéticaRESUMEN
Chemical modification of messenger RNA (mRNA) has paved the way for advancing mRNA-based therapeutics. The intricate process of mRNA translation in eukaryotes is orchestrated by numerous proteins involved in complex interaction networks. Many of them bind specifically to a unique structure at the mRNA 5'-end, called 5'-cap. Depending on the 5'-terminal sequence and its methylation pattern, different proteins may be involved in the translation initiation and regulation, but a deeper understanding of these mechanisms requires specialized molecular tools to identify natural binders of mRNA 5'-end variants. Here, a series of 8 new synthetic 5'-cap analogs that allow the preparation of RNA molecules with photoreactive tags using a standard in vitro transcription reaction are reported. Two photoreactive tags and four different modification sites are selected to minimize potential interference with cap-protein contacts and to provide complementary properties regarding crosslinking chemistry and molecular interactions. The tailored modification strategy allows for the generation of specific crosslinks with model cap-binding proteins, such as eIF4E and Dcp2. The usefulness of the photoreactive cap analogs is also demonstrated for identifying the cap-binding subunit in a multi-protein complex, which makes them perfect candidates for further development of photoaffinity labeling probes to study more complex mRNA-related processes.
Asunto(s)
ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/química , Reactivos de Enlaces Cruzados/química , Análogos de Caperuza de ARN/metabolismo , Análogos de Caperuza de ARN/química , HumanosRESUMEN
All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Unión Proteica , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Cinética , Proteínas/metabolismo , Proteínas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genéticaRESUMEN
Long-read RNA sequencing is essential to produce accurate and exhaustive annotation of eukaryotic genomes. Despite advancements in throughput and accuracy, achieving reliable end-to-end identification of RNA transcripts remains a challenge for long-read sequencing methods. To address this limitation, we develop CapTrap-seq, a cDNA library preparation method, which combines the Cap-trapping strategy with oligo(dT) priming to detect 5' capped, full-length transcripts. In our study, we evaluate the performance of CapTrap-seq alongside other widely used RNA-seq library preparation protocols in human and mouse tissues, employing both ONT and PacBio sequencing technologies. To explore the quantitative capabilities of CapTrap-seq and its accuracy in reconstructing full-length RNA molecules, we implement a capping strategy for synthetic RNA spike-in sequences that mimics the natural 5'cap formation. Our benchmarks, incorporating the Long-read RNA-seq Genome Annotation Assessment Project (LRGASP) data, demonstrate that CapTrap-seq is a competitive, platform-agnostic RNA library preparation method for generating full-length transcript sequences.
Asunto(s)
Biblioteca de Genes , Análisis de Secuencia de ARN , Animales , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Caperuzas de ARN/genéticaRESUMEN
Messenger RNA (mRNA) therapies have recently gained tremendous traction with the approval of mRNA vaccines for the prevention of SARS-CoV-2 infection. However, manufacturing challenges have complicated large scale mRNA production, which is necessary for the clinical viability of these therapies. Not only can the incorporation of the required 5' 7-methylguanosine cap analog be inefficient and costly, in vitro transcription (IVT) using wild-type T7 RNA polymerase generates undesirable double-stranded RNA (dsRNA) byproducts that elicit adverse host immune responses and are difficult to remove at large scale. To overcome these challenges, we have engineered a novel RNA polymerase, T7-68, that co-transcriptionally incorporates both di- and tri-nucleotide cap analogs with high efficiency, even at reduced cap analog concentrations. We also demonstrate that IVT products generated with T7-68 have reduced dsRNA content.
Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Bicatenario , ARN Mensajero , Proteínas Virales , ARN Bicatenario/metabolismo , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Transcripción Genética , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Ingeniería de ProteínasRESUMEN
Cap-independent or eukaryotic initiation factor (eIF) 4E-independent, translation initiation in eukaryotes requires scaffolding protein eIF4G or its homolog, death-associated protein 5 (DAP5). eIF4G associates with the 40S ribosomal subunit, recruiting the ribosome to the RNA transcript. A subset of RNA transcripts, such as fibroblast growth factor 9 (FGF-9), contain 5' untranslated regions (5' UTRs) that directly bind DAP5 or eIF4GI. For viral mRNA, eIF recruitment usually utilizes RNA structure, such as a pseudoknot or stem-loops, and the RNA-helicase eIF4A is required for DAP5- or 4G-mediated translation, suggesting these 5' UTRs are structured. However, for cellular IRES-like translation, no consensus RNA structures or sequences have yet been identified for eIF binding. However, the DAP5-binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which require an unpaired, accessible 5' end to stimulate cap-independent translation. Using SHAPE-seq, we modeled the 186 nt FGF-9 5'-UTR RNA's complex secondary structure in vitro. Further, DAP5 footprinting, toeprinting, and UV cross-linking experiments identify DAP5-RNA interactions. Modeling of FGF-9 5'-UTR tertiary structure aligns DAP5-interacting nucleotides on one face of the predicted structure. We propose that RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5-binding site. DAP5 appears to contact nucleotides near the start codon. Our findings offer a new perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF-binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Asunto(s)
Regiones no Traducidas 5' , Factor 4G Eucariótico de Iniciación , Factor 9 de Crecimiento de Fibroblastos , Conformación de Ácido Nucleico , Sitios de Unión , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/química , Humanos , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/química , Biosíntesis de Proteínas , Modelos Moleculares , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/químicaRESUMEN
Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.
Asunto(s)
ARN Mensajero , Transcripción Genética , ARN Mensajero/genética , Humanos , Transfección/métodos , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ADN/genética , AnimalesRESUMEN
Target-based approaches have traditionally been used in the search for new anti-infective molecules. Target selection process, a critical step in Drug Discovery, identifies targets that are essential to establish or maintain the infection, tractable to be susceptible for inhibition, selective towards their human ortholog and amenable for large scale purification and high throughput screening. The work presented herein validates the Plasmodium falciparum mRNA 5' triphosphatase (PfPRT1), the first enzymatic step to cap parasite nuclear mRNAs, as a candidate target for the development of new antimalarial compounds. mRNA capping is essential to maintain the integrity and stability of the messengers, allowing their translation. PfPRT1 has been identified as a member of the tunnel, metal dependent mRNA 5' triphosphatase family which differs structurally and mechanistically from human metal independent mRNA 5' triphosphatase. In the present study the essentiality of PfPRT1 was confirmed and molecular biology tools and methods for target purification, enzymatic assessment and target engagement were developed, with the goal of running a future high throughput screening to discover PfPRT1 inhibitors.
Asunto(s)
Antimaláricos , Descubrimiento de Drogas , Plasmodium falciparum , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/enzimología , Descubrimiento de Drogas/métodos , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , ARN Mensajero/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Anhídrido HidrolasasRESUMEN
In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.
Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Humanos , Células HeLa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poliadenilación , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genéticaRESUMEN
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Amâa common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Asunto(s)
Caperuzas de ARN , Vacunas , Animales , Ratones , ARN Mensajero/genética , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Biosíntesis de Proteínas , MetilaciónRESUMEN
Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.
Asunto(s)
Metiltransferasas , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/química , Metilación , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Humanos , Unión Proteica , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Regulación Alostérica , COVID-19/virología , COVID-19/genética , Multimerización de Proteína , Replicación Viral/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mensajero/química , Proteínas Reguladoras y Accesorias ViralesRESUMEN
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Metiltransferasas/metabolismo , Metilación , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , SARS-CoV-2/metabolismo , ARN Viral , Virus Zika/metabolismoRESUMEN
The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.
Asunto(s)
Poli T , Ribonucleasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genéticaRESUMEN
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.