Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.181
Filtrar
1.
Biofabrication ; 16(4)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914075

RESUMEN

Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.


Asunto(s)
Bioimpresión , Capilares , Células Endoteliales de la Vena Umbilical Humana , Intestinos , Impresión Tridimensional , Humanos , Células CACO-2 , Capilares/citología , Intestinos/citología , Ingeniería de Tejidos , Alginatos/química , Polietilenglicoles/química , Andamios del Tejido/química , Mucosa Intestinal/citología , Gelatina/química
2.
J Immunol ; 208(5): 1292-1304, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131868

RESUMEN

Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate Ag either in the lymph node or in infected tissue. Although quantitative details of T cell movement strategies in some tissues such as lymph nodes or skin have been relatively well characterized, we still lack quantitative understanding of T cell movement in many other important tissues, such as the spleen, lung, liver, and gut. We developed a protocol to generate stable numbers of liver-located CD8 T cells, used intravital microscopy to record movement patterns of CD8 T cells in livers of live mice, and analyzed these and previously published data using well-established statistical and computational methods. We show that, in most of our experiments, Plasmodium-specific liver-localized CD8 T cells perform correlated random walks characterized by transiently superdiffusive displacement with persistence times of 10-15 min that exceed those observed for T cells in lymph nodes. Liver-localized CD8 T cells typically crawl on the luminal side of liver sinusoids (i.e., are in the blood); simulating T cell movement in digital structures derived from the liver sinusoids illustrates that liver structure alone is sufficient to explain the relatively long superdiffusive displacement of T cells. In experiments when CD8 T cells in the liver poorly attach to the sinusoids (e.g., 1 wk after immunization with radiation-attenuated Plasmodium sporozoites), T cells also undergo Lévy flights: large displacements occurring due to cells detaching from the endothelium, floating with the blood flow, and reattaching at another location. Our analysis thus provides quantitative details of movement patterns of liver-localized CD8 T cells and illustrates how structural and physiological details of the tissue may impact T cell movement patterns.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Movimiento Celular/fisiología , Hígado/inmunología , Malaria/prevención & control , Plasmodium berghei/inmunología , Animales , Capilares/citología , Microambiente Celular/fisiología , Hígado/irrigación sanguínea , Malaria/patología , Ratones , Plasmodium berghei/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/inmunología , Vacunación
3.
Sci Rep ; 12(1): 1439, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087109

RESUMEN

Multiple myeloma (MM) is an incurable B cell malignancy characterized by the accumulation of monoclonal abnormal plasma cells in the bone marrow (BM). It has been a significant challenge to study the spatiotemporal interactions of MM cancer cells with the embedded microenvironments of BM. Here we report a microfluidic device which was designed to mimic several physiological features of the BM niche: (1) sinusoidal circulation, (2) sinusoidal endothelium, and (3) stroma. The endothelial and stromal compartments were constructed and used to demonstrate the device's utility by spatiotemporally characterizing the CXCL12-mediated egression of MM cells from the BM stroma and its effects on the barrier function of endothelial cells (ECs). We found that the egression of MM cells resulted in less organized and loosely connected ECs, the widening of EC junction pores, and increased permeability through ECs, but without significantly affecting the number density of viable ECs. The results suggest that the device can be used to study the physical and secreted factors determining the trafficking of cancer cells through BM. The sinusoidal flow feature of the device provides an integral element for further creating systemic models of cancers that reside or metastasize to the BM niche.


Asunto(s)
Médula Ósea/patología , Dispositivos Laboratorio en un Chip , Mieloma Múltiple/patología , Análisis Espacio-Temporal , Médula Ósea/irrigación sanguínea , Capilares/citología , Capilares/patología , Línea Celular , Células Endoteliales , Humanos , Microambiente Tumoral
4.
Cell Mol Life Sci ; 79(1): 28, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936031

RESUMEN

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.


Asunto(s)
Autofagia , Capilares/citología , Radiación Cósmica , Células Endoteliales/efectos de la radiación , Transducción de Señal , Ingravidez , Apoptosis , Biomarcadores/metabolismo , Línea Celular , Supervivencia Celular , Cromosomas Humanos/metabolismo , Citoesqueleto/metabolismo , Daño del ADN , Fluorescencia , Regulación de la Expresión Génica , Genoma Humano , Humanos , Masculino , Mecanotransducción Celular , Modelos Biológicos , Transducción de Señal/efectos de la radiación , Vuelo Espacial , Estrés Fisiológico , Homeostasis del Telómero , Transcriptoma/genética
5.
Nat Commun ; 12(1): 6963, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845225

RESUMEN

Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized ß-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.


Asunto(s)
Anemia/genética , Médula Ósea/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Endotelio Vascular/metabolismo , Eritroblastos/metabolismo , Eritropoyesis/genética , beta Catenina/genética , Anemia/metabolismo , Anemia/mortalidad , Anemia/patología , Animales , Médula Ósea/irrigación sanguínea , Capilares/citología , Capilares/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular , Células Endoteliales/clasificación , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Eritroblastos/clasificación , Eritroblastos/citología , Femenino , Factor-23 de Crecimiento de Fibroblastos/genética , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Integrasas/genética , Integrasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Transgénicos , Osteogénesis , Reticulocitos/citología , Reticulocitos/metabolismo , Análisis de Supervivencia , Vía de Señalización Wnt , beta Catenina/metabolismo
6.
Acta Neuropathol Commun ; 9(1): 130, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34340718

RESUMEN

Cerebral pericytes are an integral component of the neurovascular unit, which governs the blood-brain barrier. There is paucity of knowledge on cortical pericytes across different dementias. We quantified cortical pericytes in capillaries in 124 post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD) and AD-VaD (Mixed) and, post-stroke non-demented (PSND) stroke survivors as well as normal ageing controls. Collagen 4 (COL4)-positive nucleated pericyte soma were identified as protrusions on capillaries of the frontal cortex. The COL4-positive somata or nodule-like cell bodies were also verified by platelet derived growth factor receptor-ß (PDGFR-ß) immunohistochemistry. The mean (± SEM) pericyte somata in frontal cortical capillaries in normal young controls (46-65 years of age) was estimated as 5.2 ± 0.2 per mm capillary length. This number was reduced by 45% in older controls (> 78 years) to 2.9 ± 0.1 per mm capillary length (P < 0.001). We further found that the numbers of pericyte cell bodies per COL4 mm2 area or per mm capillary length were not decreased but rather preserved or increased in PSD, AD and Mixed dementia groups compared to similar age older controls (P < 0.01). Consistent with this, we noted that capillary length densities identified by the endothelial marker glucose transporter 1 or COL4 were not different across the dementias compared to older controls. There was a negative correlation with age (P < 0.001) suggesting fewer pericyte somata in older age, although the % COL4 immunoreactive capillary area was increased in older controls compared to young controls. Using a proven reliable method to quantify COL4-positive nucleated pericytes, our observations demonstrate ageing related loss but mostly preserved pericytes in the frontal cortex of vascular and AD dementias. We suggest there is differential regulation of capillary pericytes in the frontal lobe between the cortex and white matter in ageing-related dementias.


Asunto(s)
Enfermedad de Alzheimer/patología , Capilares/patología , Demencia Vascular/patología , Demencia/patología , Lóbulo Frontal/irrigación sanguínea , Pericitos/patología , Anciano , Anciano de 80 o más Años , Capilares/citología , Estudios de Casos y Controles , Recuento de Células , Colágeno Tipo IV/metabolismo , Demencia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Accidente Cerebrovascular/complicaciones
7.
Med Sci Monit ; 27: e933601, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34456330

RESUMEN

BACKGROUND The aim of this study was to investigate distribution rules of radial peripapillary capillaries (RPCs) density and correlations with retinal nerve fiber layers (RNFL) thickness in normal subjects. MATERIAL AND METHODS We included 78 eyes of 78 healthy subjects examined by optical coherence tomography angiography (OCTA). RPCs density and RNFL thickness were measured automatically. Distributions of RPCs density and RNFL thickness were analyzed at different locations. Correlations of these 2 parameters and relationship with large vessels were evaluated by Spearman test. RESULTS Average density for overall, peripapillary, and inside disc RCPs was 56.12±2.51%, 58.56±2.84%, and 60.16±4.01%, respectively. Overall and peripapillary RCPs density were positively correlated with RNFL thickness (r=0.595, P.


Asunto(s)
Capilares/citología , Fibras Nerviosas/fisiología , Disco Óptico/irrigación sanguínea , Vasos Retinianos/citología , Adulto , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Campos Visuales , Adulto Joven
8.
Int Immunopharmacol ; 100: 108052, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34454294

RESUMEN

Mast cells (MCs) are tissue-resident effector cells that could be the earliest responder to release a unique, stimulus-specific set of mediators in hepatic ischemia-reperfusion (IR) injury However, how MCs function in the hepatic IR has remained a formidable challenge due to the substantial redundancy and functional diverse of these mediators. Tryptase is the main protease for degranulation of MCs and its receptor-protease-activated receptor 2 (PAR-2) is widely expressed in endothelial cells. It is unclear whether and how tryptase/PAR-2 axis participates in hepatic IR. We employed an experimental warm 70% liver IR model in mice and found that tryptase was accumulated in the circulation during hepatic IR and positively correlated with liver injury. Tryptase inhibition by protamine can significantly down-regulate the expression of adhesion molecules and reduce neutrophil infiltration within the liver. The level of inflammatory factors and chemokines were also consistent with the pathological change of the liver. In addition, the treatment with exogeneous tryptase in MC-deficient mice can induce the damage observed in wild type mice in the context of liver IR. In vitro, neutrophil infiltration and inflammatory factor secretion were regulated by Tryptase/PAR-2, involving the adhesion molecule expression to regulate neutrophil adhesion dependent on NF-κB pathway. Conclusion: tryptase/PAR-2 participates in liver injury through the activation of LSECs in the early phase of liver IR.


Asunto(s)
Hígado/irrigación sanguínea , Receptor PAR-2/metabolismo , Daño por Reperfusión/inmunología , Triptasas/metabolismo , Animales , Capilares/citología , Capilares/inmunología , Capilares/patología , Degranulación de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Humanos , Hígado/patología , Mastocitos/enzimología , Mastocitos/inmunología , Ratones , Cultivo Primario de Células , Proteínas Recombinantes/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/inmunología
9.
PLoS One ; 16(8): e0256423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34437590

RESUMEN

BACKGROUND: Point-of-care (PoC) testing of platelet count (PLT) provides real-time data for rapid decision making. The goal of this study is to evaluate the accuracy and precision of platelet counting using a new microvolume (8 µL), absolute counting, 1.5 kg cytometry-based blood analyzer, the rHEALTH ONE (rHEALTH) in comparison with the International Society of Laboratory Hematology (ISLH) platelet method, which uses a cytometer and an impedance analyzer. METHODS: Inclusion eligibility were healthy adults (M/F) ages 18-80 for donation of fingerprick and venous blood samples. Samples were from a random N = 31 volunteers from a single U.S. site. Samples were serially diluted to test thrombocytopenic ranges. Interfering substances and conditions were tested, including RBC fragments, platelet fragments, cholesterol, triglycerides, lipids, anti-platelet antibodies, and temperature. RESULTS: The concordance between the rHEALTH and ISLH methods had a slope = 1.030 and R2 = 0.9684. The rHEALTH method showed a correlation between capillary and venous blood samples (slope = 0.9514 and R2 = 0.9684). Certain interferents changed platelet recovery: RBC fragments and anti-platelet antibodies with the ISLH method; platelet fragments and anti-platelet antibodies on the rHEALTH; and RBC fragments, platelets fragments, triglycerides and LDL on the clinical impedance analyzer. The rHEALTH's precision ranged from 3.1-8.0%, and the ISLH from 1.0-10.5%. CONCLUSIONS: The rHEALTH method provides similar results with the reference method and good correlation between adult capillary and venous blood samples. This demonstrates the ability of the rHEALTH to provide point-of-care assessment of normal and thrombocytopenic platelet counts from fingerprick blood with high precision and limited interferences.


Asunto(s)
Capilares/citología , Citometría de Flujo/instrumentación , Microtecnología/instrumentación , Sistemas de Atención de Punto , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bioensayo , Recolección de Muestras de Sangre , Humanos , Persona de Mediana Edad , Recuento de Plaquetas , Adulto Joven
10.
Dev Dyn ; 250(12): 1704-1716, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34101289

RESUMEN

Intussusceptive angiogenesis (IA) is an important physiological form of angiogenesis in which an existing vessel splits in two by the formation of an intraluminal tissue pillar. The presence of these intraluminal pillars form the hallmark of ongoing IA in growing vascular beds. However, their visualization is technically challenging. The goal of this systematic review was to investigate which techniques are being used to identify intraluminal pillars and to formulate important points to keep in mind when studying IA. A systematic literature search resulted in 154 evaluated articles of which the majority (65%) provided sufficient data to unambiguously demonstrate the presence of intraluminal pillars. Scanning electron microscopy imaging of vascular corrosion casts and serial sectioning of ultrathin sections are the most used techniques. New methods such as serial block face scanning electron microscopy and micro computed tomography (µCT) are gaining importance. Moreover, our results indicate that IA was studied in a variety of animals and tissues. IA is a biologically very relevant form of angiogenesis. Techniques to visualize intraluminal pillars need to have a minimal resolution of 1 µm and should provide information on the 3D-nature of the pillars. Optimally, several techniques are combined to demonstrate ongoing IA.


Asunto(s)
Capilares/crecimiento & desarrollo , Técnicas Citológicas , Neovascularización Fisiológica/fisiología , Animales , Capilares/citología , Capilares/embriología , Técnicas Citológicas/métodos , Técnicas Citológicas/tendencias , Morfogénesis/fisiología
11.
Theranostics ; 11(13): 6461-6476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995668

RESUMEN

Vascular endothelial cells (ECs) are increasingly recognized as active players in intercellular crosstalk more than passive linings of a conduit for nutrition delivery. Yet, their functional roles and heterogeneity in skin remain uncharacterized. We have used single-cell RNA sequencing (scRNA-seq) as a profiling strategy to investigate the tissue-specific features and intra-tissue heterogeneity in dermal ECs at single-cell level. Methods: Skin tissues collected from 10 donors were subjected to scRNA-seq. Human dermal EC atlas of over 23,000 single-cell transcriptomes was obtained and further analyzed. Arteriovenous markers discovered in scRNA-seq were validated in human skin samples via immunofluorescence. To illustrate tissue-specific characteristics of dermal ECs, ECs from other human tissues were extracted from previously reported data and compared with our transcriptomic data. Results: In comparison with ECs from other human tissues, dermal ECs possess unique characteristics in metabolism, cytokine signaling, chemotaxis, and cell adhesions. Within dermal ECs, 5 major subtypes were identified, which varied in molecular signatures and biological activities. Metabolic transcriptome analysis revealed a preference for oxidative phosphorylation in arteriole ECs when compared to capillary and venule ECs. Capillary ECs abundantly expressed HLA-II molecules, suggesting its immune-surveillance role. Post-capillary venule ECs, with high levels of adhesion molecules, were equipped with the capacity in immune cell arrest, adhesion, and infiltration. Conclusion: Our study provides a comprehensive characterization of EC features and heterogeneity in human dermis and sets the stage for future research in identifying disease-specific alterations of dermal ECs in various dermatoses.


Asunto(s)
Dermis/citología , Células Endoteliales/metabolismo , Transcriptoma , Secuencia de Bases , Biomarcadores , Capilares/citología , Adhesión Celular , Dermis/irrigación sanguínea , Dermis/metabolismo , Expresión Génica , Humanos , Fenotipo , Análisis de la Célula Individual , Vénulas/citología
12.
Cell Biol Int ; 45(8): 1685-1697, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33811714

RESUMEN

Electromagnetic fields (EMFs) have emerged as a versatile means for osteoporosis treatment and prevention. However, its optimal application parameters are still elusive. Here, we optimized the frequency parameter first by cell culture screening and then by animal experiment validation. Osteoblasts isolated from newborn rats (ROBs) were exposed 90 min/day to 1.8 mT SEMFs at different frequencies (ranging from 10 to 100 Hz, interval of 10 Hz). SEMFs of 1.8 mT inhibited ROB proliferation at 30, 40, 50, 60 Hz, but increased proliferation at 10, 70, 80 Hz. SEMFs of 10, 50, and 70 Hz promoted ROB osteogenic differentiation and mineralization as shown by alkaline phosphatase (ALP) activity, calcium content, and osteogenesis-related molecule expression analyses, with 50 Hz showing greater effects than 10 and 70 Hz. Treatment of young rats with 1.8 mT SEMFs at 10, 50, or 100 Hz for 2 months significantly increased whole-body bone mineral density (BMD) and femur microarchitecture, with the 50 Hz group showing the greatest effect. Furthermore, 1.8 mT SEMFs extended primary cilia lengths of ROBs and increased protein kinase A (PKA) activation also in a frequency-dependent manner, again with 50 Hz SEMFs showing the greatest effect. Pretreatment of ROBs with the PKA inhibitor KT5720 abolished the effects of SEMFs to increase primary cilia length and promote osteogenic differentiation/mineralization. These results indicate that 1.8 mT SEMFs have a frequency window effect in promoting osteogenic differentiation/mineralization in ROBs and bone formation in growing rats, which involve osteoblast primary cilia length extension and PKA activation.


Asunto(s)
Diferenciación Celular/fisiología , Cilios/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Campos Electromagnéticos , Osteoblastos/fisiología , Osteogénesis/fisiología , Animales , Animales Recién Nacidos , Capilares/citología , Capilares/fisiología , Células Cultivadas , Activación Enzimática/fisiología , Femenino , Ratas , Ratas Wistar , Cráneo/citología , Cráneo/fisiología
13.
J Gastroenterol Hepatol ; 36(9): 2610-2618, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33694195

RESUMEN

BACKGROUND AND AIM: Both type 2 diabetes mellitus and non-alcoholic fatty liver disease are closely associated with elevated levels of low-density lipoprotein cholesterol and its oxidized form (ox-LDL). This study aimed to investigate the regulation of sortilin in liver tissue and its potential implications for lipid metabolism. METHODS: Sixty male Wistar rats were randomly divided into four groups: control group (n = 15), ox-LDL group (n = 15), PD98059 group (n = 15), and ox-LDL + PD98059 group (n = 15). Liver sinusoidal endothelial cells were extracted from liver tissue of the control group and were identified using an anti-CD31 antibody. Lipid droplet accumulation was observed by Oil red O and hematoxylin-eosin staining. The protein expression levels were detected by immunohistochemical staining, real-time reverse transcription-polymerase chain reaction, and western blot. Histopathologic examinations were performed by Gomori methenamine silver staining. RESULTS: The ox-LDL group exhibited increased lipid droplet accumulation. Further, ox-LDL activated the extracellular signal-regulated kinase (ERK)-mediated downregulation of sortilin expression, whereas blocking of ERK signaling by PD98059 increased sortilin protein expression. Consistently, hematoxylin-eosin staining showed that the structure of the hepatocytes was loose and disordered in arrangement, with lipid droplets present in the cytoplasm of the ox-LDL group. However, PD98059 significantly improved the integration of the scaffold structure. Gomori methenamine silver staining showed that the ox-LDL group had darker and more obvious fragmented silver nitrate deposits in the basement membrane and sinus space. CONCLUSIONS: Sortilin can protect liver sinusoidal endothelial cells from injury and maintain integration of the liver scaffold structure in ox-LDL-induced lipid-injured liver.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/biosíntesis , Capilares , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Lipoproteínas LDL/metabolismo , Hígado , Animales , Capilares/citología , Capilares/metabolismo , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hígado/irrigación sanguínea , Hígado/citología , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Transducción de Señal
14.
Metallomics ; 13(1)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33570138

RESUMEN

The naturally occurring selenoneine (SeN), the selenium analogue of the sulfur-containing antioxidant ergothioneine, can be found in high abundance in several marine fish species. However, data on biological properties of SeN and its relevance for human health are still scarce. This study aims to investigate the transfer and presystemic metabolism of SeN in a well-established in vitro model of the blood-brain barrier (BBB). Therefore, SeN and the reference Se species selenite and Se-methylselenocysteine (MeSeCys) were applied to primary porcine brain capillary endothelial cells (PBCECs). Se content of culture media and cell lysates was measured via ICP-MS/MS. Speciation analysis was conducted by HPLC-ICP-MS. Barrier integrity was shown to be unaffected during transfer experiments. SeN demonstrated the lowest transfer rates and permeability coefficient (6.7 × 10-7 cm s-1) in comparison to selenite and MeSeCys. No side-directed accumulation was observed after both-sided application of SeN. However, concentration-dependent transfer of SeN indicated possible presence of transporters on both sides of the barrier. Speciation analysis demonstrated no methylation of SeN by the PBCECs. Several derivatives of SeN detected in the media of the BBB model were also found in cell-free media containing SeN and hence not considered to be true metabolites of the PBCECs. In concluding, SeN is likely to have a slow transfer rate to the brain and not being metabolized by the brain endothelial cells. Since this study demonstrates that SeN may reach the brain tissue, further studies are needed to investigate possible health-promoting effects of SeN in humans.


Asunto(s)
Barrera Hematoencefálica , Histidina/análogos & derivados , Modelos Biológicos , Compuestos de Organoselenio/farmacocinética , Animales , Encéfalo/irrigación sanguínea , Capilares/citología , Capilares/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Histidina/farmacocinética , Técnicas In Vitro , Porcinos
15.
J Immunol ; 206(6): 1284-1296, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33568400

RESUMEN

Neutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb. Compared with humanized FcγRIIb-expressing mice, HIV clearance was significantly slower in FcγRIIb knockout mice. Interestingly, a pentamix of neutralizing Abs cleared HIV faster compared with hyperimmune anti-HIV Ig (HIVIG), although the HIV Ab/Ag ratio was higher in immune complexes made of HIVIG and HIV than pentamix and HIV. The effector mechanism of LSEC FcγRIIb was identified to be endocytosis. Once endocytosed, both Ab-opsonized HIV pseudoviruses and HIV localized to lysosomes. This suggests that clearance of HIV, endocytosis, and lysosomal trafficking within LSEC occur sequentially and that the clearance rate may influence downstream events. Most importantly, we have identified LSEC FcγRIIb-mediated endocytosis to be the Fc effector mechanism to eliminate cell-free HIV by Abs, which could inform development of HIV vaccine and Ab therapy.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Endocitosis/inmunología , Células Endoteliales/inmunología , Infecciones por VIH/inmunología , Receptores de IgG/metabolismo , Animales , Capilares/citología , Capilares/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/virología , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Células HEK293 , VIH/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/patología , Infecciones por VIH/virología , Voluntarios Sanos , Humanos , Hígado/irrigación sanguínea , Hígado/inmunología , Lisosomas/metabolismo , Lisosomas/virología , Masculino , Ratones , Ratones Noqueados , Cultivo Primario de Células , Receptores de IgG/genética
16.
Methods Mol Biol ; 2235: 27-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576968

RESUMEN

Pericytes are mural cells closely associated with endothelial cells in capillaries and microvessels. They are precursors of mesenchymal stem/stromal cells that have historically been retrospectively characterized in culture. We established a protocol, described in this chapter, to characterize and isolate pericytes from multiple human organs by flow cytometry and fluorescence-activated cell sorting. This prospective purification of pericytes brings us a step forward in the development of strategies for their use in the clinic.


Asunto(s)
Citometría de Flujo/métodos , Pericitos/citología , Pericitos/trasplante , Capilares/citología , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Células Cultivadas , Células Endoteliales/citología , Humanos , Células Madre Mesenquimatosas/citología , Microvasos/citología , Pericitos/metabolismo , Fenotipo
17.
Methods Mol Biol ; 2235: 37-45, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576969

RESUMEN

Pericytes are found in all vascularized organs and are defined anatomically as perivascular cells that closely surround endothelial cells in capillaries and microvessels and are embedded within the same basement membrane. They have been shown to have diverse physiological and pathological functions including regulation of blood pressure, and tissue regeneration and scarring. Fundamental to understanding the role these cells play in these diverse processes is the ability to accurately identify and localize them in vivo. To do this, we have developed multicolor immunohistochemistry protocols described in this chapter.


Asunto(s)
Inmunohistoquímica/métodos , Pericitos/citología , Pericitos/trasplante , Capilares/citología , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Humanos , Microvasos/citología , Pericitos/metabolismo , Fenotipo
18.
Methods Mol Biol ; 2235: 47-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576970

RESUMEN

We report the use of self-assembled peptide (F2/S) hydrogels and cellular metabolomics to identify a number of innate molecules that are integral to the metabolic processes which drive cellular differentiation of multipotent pericyte stem cells. The culture system relies solely on substrate mechanics to induce differentiation in the absence of traditional differentiation media and therefore is a non-invasive approach to assessing cellular behavior at the molecular level and identifying key metabolites in this process. This novel approach demonstrates that simple metabolites can provide an alternative means to direct stem cell differentiation and that biomaterials can be used to identify them simply and quickly.


Asunto(s)
Metabolómica/métodos , Pericitos/citología , Pericitos/trasplante , Animales , Materiales Biocompatibles/metabolismo , Capilares/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Células Endoteliales/citología , Humanos , Hidrogeles/química , Microvasos/citología , Células Madre Multipotentes/efectos de los fármacos , Péptidos/química , Pericitos/metabolismo , Fenotipo
19.
Am J Physiol Heart Circ Physiol ; 320(2): H699-H712, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306443

RESUMEN

Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.


Asunto(s)
Adenosina Trifosfato/farmacología , Encéfalo/irrigación sanguínea , Señalización del Calcio/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Pericitos/efectos de los fármacos , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y/efectos de los fármacos , Animales , Capilares/citología , Bovinos , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Pericitos/metabolismo , Fenotipo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efectos de los fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/efectos de los fármacos , Receptores Purinérgicos P2Y2/metabolismo
20.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374875

RESUMEN

One of the most important challenges facing researchers in the field of regenerative medicine is to develop methods to introduce vascular networks into bioengineered tissues. Although cell scaffolds that slowly release angiogenic factors can promote post-transplantation angiogenesis, they cannot be used to construct thick tissues because of the time required for sufficient vascular network formation. Recently, the co-culture of graft tissue with vascular cells before transplantation has attracted attention as a way of promoting capillary angiogenesis. Although the co-cultured vascular cells can directly contribute to blood vessel formation within the tissue, a key objective that needs to be met is the construction of a continuous circulatory structure. Previously described strategies to reconstruct blood vessels include the culture of endothelial cells in a scaffold that contains microchannels or within the original vascular framework after decellularization of an entire organ. The technique, as developed by authors, involves the progressive stacking of three-layered cell sheets onto a vascular bed to induce the formation of a capillary network within the cell sheets. This approach enables the construction of thick, functional tissue of high cell density that can be transplanted by anastomosing its artery and vein (provided by the vascular bed) with host blood vessels.


Asunto(s)
Capilares/fisiología , Ingeniería de Tejidos/métodos , Animales , Capilares/citología , Humanos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA