Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Sci Rep ; 14(1): 16427, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013912

RESUMEN

The ecotoxicological consequences of azoxystrobin on land snails have not yet been addressed. Therefore, the present study aims to provide novel data on the threat of a commercial grade azoxystrobin (AMISTAR) at two environmentally relevant concentrations (0.3 µg/ml) and tenfold (3 µg/ml) on the model species, Theba pisana by physiological, biochemical, and histopathological markers for 28 days. Our results showed a reduction in animal food consumption and growth due to exposure to both azoxystrobin concentrations. It also induced oxidative stress and led to a significant decrease in lipid peroxidation (LPO) levels after 7 days of exposure, while the opposite effect occurred after 28 days. Except for the 7-day exposure, all treated snails had significantly reduced glutathione (GSH) content and increased catalase (CAT) activity at all-time intervals. Glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, and protein content (PC) were elevated in treated snails at all-time intervals. Moreover, alterations in acetylcholinesterase (AChE) activity between a decrease and an increase were noticed. Additionally, azoxystrobin exerted changes in T. pisana hepatopancreas architecture. Our study suggests that azoxystrobin may have negative ecological consequences for T. pisana and highlights its potential risks to the natural environment.


Asunto(s)
Fungicidas Industriales , Glutatión , Metacrilatos , Estrés Oxidativo , Pirimidinas , Caracoles , Estrobilurinas , Animales , Estrobilurinas/toxicidad , Pirimidinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fungicidas Industriales/toxicidad , Metacrilatos/toxicidad , Caracoles/efectos de los fármacos , Caracoles/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Glutatión Transferasa/metabolismo , Acetilcolinesterasa/metabolismo , Ecotoxicología , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo
2.
Sci Rep ; 14(1): 15888, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987615

RESUMEN

Bulk zinc oxide (ZnO-BPs) and its nanoparticles (ZnO-NPs) are frequently used in various products for humans. Helisoma duryi embryos can serve as effective model organisms for studying the toxicity of NPs. This study aimed to compare the teratogenic potency of ZnO-BPs and ZnO NPs in the embryonic stages of H. duryi to evaluate the utility of this snail as a bioindicator for ZnO-NPs in the aquatic environment. The mechanisms of teratogenesis were evaluated by determination of the LC50, studying the effect of sub-lethal concentrations of both ZnO forms on the embryos, and studying their enzyme activity, oxidative stress, and biochemical analysis. The SDS-PAGE electrophoresis was undertaken to assess the effect of ZnO-BPs and ZnO NPs on protein synthesis. The results revealed that the veliger stage of H. duryi is the specific stage for bulk and nano ZnO. ZnO-NPs proved to be more toxic to snails' embryos than ZnO-BPs. Exposure to ZnO influences specific types of defects in development, which in the case of BPs are far less drastic than those caused by NPs. Thus, the toxicity of ZnO-NPs in embryonic development is due to their unique physicochemical properties. The observed malformations include mainly hydropic malformation, exogastrulation, monophthalmia, shell misshapen, and cell lyses. Almost all tested oxidative biomarkers significantly changed, revealing that ZnONPs display more oxidative stress than ZnO-BPs. Also, the low concentration of ZnO induces many disturbances in the organic substances of veliger larvae, such as a decrease in the total protein and total lipid levels and an increase in the glycogen level. The results indicated that ZnO-BPs increase the number of protein bands. Conversely, ZnO-NPs concealed one band from treated egg masses, which was found in the control group. Embryos of snail are an appropriate model to control freshwater snails. This study demonstrates that H. duryi embryos can serve as effective model organisms to study the toxicity of ZnO-NPs.


Asunto(s)
Embrión no Mamífero , Estrés Oxidativo , Caracoles , Teratógenos , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Animales , Caracoles/embriología , Caracoles/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Teratógenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Agua Dulce , Desarrollo Embrionario/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/química , Contaminantes Químicos del Agua/toxicidad
3.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893362

RESUMEN

Pomacea canaliculata, the invasive snail, is a host of the parasitic nematode Angiostrongylus cantonensis, which has adverse effects on the agriculture system and human health. This work evaluated the molluscicidal activity of petroleum ether extracts (PEEs) from three species of Chimonanthus against the snail P. canaliculate. Pcp (PEE of C. praecox) showed the most effective molluscicide activity. Sixty-one compounds were identified by GC-MS and the main components were terpenoids and fatty acids. The half-lethal concentration (LC50) of Pcp at 24 h (0.27 mg/mL) and 48 h (0.19 mg/mL) was used to evaluate the biochemical alterations in snail tissue. These sublethal concentrations caused the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity to increase, while acetylcholinesterase (AChE) activity decreased. Also, under LC50 treatment, several histological changes were observed in the hepatopancreas and foot of the snail compared with the control group. Moreover, the toxic test in rice demonstrated that Pcp has low toxicity. These results suggest that Pcp could be developed as an effective molluscicide for P. canaliculata control.


Asunto(s)
Moluscocidas , Extractos Vegetales , Hojas de la Planta , Caracoles , Animales , Moluscocidas/farmacología , Moluscocidas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Caracoles/efectos de los fármacos , Hojas de la Planta/química
4.
Parasitol Res ; 123(7): 257, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940835

RESUMEN

As ecosystem disruptors and intermediate hosts for various parasites, freshwater snails have significant socioeconomic impacts on human health, livestock production, and aquaculture. Although traditional molluscicides have been widely used to mitigate these effects, their environmental impact has encouraged research into alternative, biologically based strategies to create safer, more effective molluscicides and diminish the susceptibility of snails to parasites. This review focuses on alterations in glucose metabolism in snails under the multifaceted stressors of parasitic infections, drug exposure, and environmental changes and proposes a novel approach for snail management. Key enzymes within the glycolytic pathway, such as hexokinase and pyruvate kinase; tricarboxylic acid (TCA) cycle; and electron transport chains, such as succinate dehydrogenase and cytochrome c oxidase, are innovative targets for molluscicide development. These targets can affect both snails and parasites and provide an important direction for parasitic disease prevention research. For the first time, this review summarises the reverse TCA cycle and alternative oxidase pathway, which are unique metabolic bypasses in invertebrates that have emerged as suitable targets for the formulation of low-toxicity molluscicides. Additionally, it highlights the importance of other metabolic pathways, including lactate, alanine, glycogenolysis, and pentose phosphate pathways, in snail energy supply, antioxidant stress responses, and drug evasion mechanisms. By analysing the alterations in key metabolic enzymes and their products in stressed snails, this review deepens our understanding of glucose metabolic alterations in snails and provides valuable insights for identifying new pharmacological targets.


Asunto(s)
Glucosa , Moluscocidas , Caracoles , Animales , Moluscocidas/farmacología , Caracoles/efectos de los fármacos , Caracoles/metabolismo , Caracoles/parasitología , Glucosa/metabolismo , Agua Dulce
5.
Ecotoxicol Environ Saf ; 280: 116549, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852467

RESUMEN

Roundup®, a prominent glyphosate-based herbicide (GBH), holds a significant position in the global market. However, studies of its effects on aquatic invertebrates, including molluscs are limited. Pomacea canaliculata, a large freshwater snail naturally thrives in agricultural environments where GBH is extensively employed. Our investigation involved assessing the impact of two concentrations of GBH (at concentrations of 19.98 mg/L and 59.94 mg/L, corresponding to 6 mg/L and 18 mg/L glyphosate) during a 96 h exposure experiment on the intestinal bacterial composition and metabolites of P. canaliculata. Analysis of the 16 S rRNA gene demonstrated a notable reduction in the alpha diversity of intestinal bacteria due to GBH exposure. Higher GBH concentration caused a significant shift in the relative abundance of dominant bacteria, such as Bacteroides and Paludibacter. We employed widely-targeted metabolomics analysis to analyze alterations in the hepatopancreatic metabolic profile as a consequence of GBH exposure. The shifts in metabolites primarily affected lipid, amino acid, and glucose metabolism, resulting in compromised immune and adaptive capacities in P. canaliculata. These results suggested that exposure to varying GBH concentrations perpetuates adverse effects on intestinal and hepatopancreatic health of P. canaliculata. This study provides an understanding of the negative effects of GBH on P. canaliculata and may sheds light on its potential implications for other molluscs.


Asunto(s)
Microbioma Gastrointestinal , Glicina , Glifosato , Hepatopáncreas , Herbicidas , Contaminantes Químicos del Agua , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Caracoles/efectos de los fármacos , ARN Ribosómico 16S/genética , Metabolómica
6.
Appl Opt ; 63(13): 3712-3724, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856558

RESUMEN

This study aimed to evaluate the effects of herbicide 2, 4-D-dichlorophenoxy acetic acid on golden apple snail eggs and embryos. Additionally, the study assessed the applicability of optical coherence tomography (OCT), a non-invasive depth cross-sectional microscopic imaging technique, as a novel method, to the best of our knowledge, for studying morphological changes in golden apple snail eggs and embryos, in comparison to the conventional approach of using white light microscopy. The study revealed that the herbicide 2,4-D-dichlorophenoxy acetic acid affected the hatchery rate and morphological changes of the eggs and embryos. The lethal concentration (LC50), representing the concentration of a substance that is expected to cause death in half of the population being studied, of the golden apple eggs and embryos increased with longer exposure time and higher concentrations. The estimated median effective concentration (EC50), which denotes the concentration producing the desired effect in 50% of the exposed golden apple embryos, exhibited a similar trend of change as the LC50. When compared to the microscopic study, it was observed that OCT could be employed to investigate morphological changes of golden apple snail eggs and embryos, enabling evaluation of alterations in both 2D and 3D structures.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Embrión no Mamífero , Herbicidas , Tomografía de Coherencia Óptica , Animales , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido 2,4-Diclorofenoxiacético/toxicidad , Tomografía de Coherencia Óptica/métodos , Herbicidas/farmacología , Herbicidas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Caracoles/embriología , Caracoles/efectos de los fármacos , Óvulo/efectos de los fármacos
7.
J Hazard Mater ; 472: 134623, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754231

RESUMEN

This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.


Asunto(s)
Arsénico , Biotransformación , Microbioma Gastrointestinal , Caracoles , Contaminantes Químicos del Agua , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Arsénico/metabolismo , Arsénico/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Caracoles/metabolismo , Caracoles/efectos de los fármacos , Agua Dulce , Bioacumulación , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Antibacterianos/farmacología
8.
Environ Pollut ; 352: 124095, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703984

RESUMEN

Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.


Asunto(s)
Dióxido de Carbono , Peces , Compuestos de Metilmercurio , Oryza , Contaminantes Químicos del Agua , Humedales , Compuestos de Metilmercurio/análisis , Dióxido de Carbono/análisis , Peces/metabolismo , Animales , Oryza/metabolismo , Oryza/química , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Ecosistema , Monitoreo del Ambiente , Caracoles/efectos de los fármacos , Caracoles/metabolismo
9.
J Exp Zool A Ecol Integr Physiol ; 341(6): 683-701, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594790

RESUMEN

Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. Helisoma duryi snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on H. duryi snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11-31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.


Asunto(s)
Reproducción , Caracoles , Óxido de Zinc , Animales , Óxido de Zinc/administración & dosificación , Óxido de Zinc/toxicidad , Caracoles/efectos de los fármacos , Caracoles/fisiología , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Femenino , Nanopartículas del Metal/toxicidad
10.
Pestic Biochem Physiol ; 201: 105889, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685220

RESUMEN

Amprolium (AMP) is an organic compound used as a poultry anticoccidiostat. The aim of this work is to repurpose AMP to control the land snail, Eobania vermiculata in the laboratory and in the field. When snails treated with ½ LC50 of AMP, the levels of alkaline phosphatase (ALP), total lipids (TL), urea, creatinine, malondialdehyde (MDA), catalase (CAT), and nitric oxide (NO) were significantly increased, whereas the levels of acetylcholinesterase (AChE), total protein (TP), and glutathione (GSH) decreased. It also induced histopathological and ultrastructural changes in the digestive gland, hermaphrodite gland, kidney, mucus gland, and cerebral ganglion. Furthermore, scanning electron micrographs revealed various damages in the tegumental structures of the mantle-foot region of E. vermiculata snails. The field application demonstrated that the AMP spray caused reduced percentages in snail population of 75 and 84% after 7 and 14 days of treatment. In conclusion, because AMP disrupts the biology and physiology of the land snail, E. vermiculata, it can be used as an effective molluscicide.


Asunto(s)
Moluscocidas , Caracoles , Animales , Moluscocidas/farmacología , Caracoles/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Malondialdehído/metabolismo , Reposicionamiento de Medicamentos , Óxido Nítrico/metabolismo , Catalasa/metabolismo , Fosfatasa Alcalina/metabolismo , Glutatión/metabolismo
11.
Environ Toxicol Chem ; 43(7): 1537-1546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629586

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of growing concern due to their potential negative effects on wildlife and human health. Per- and polyfluoroalkyl substances have been shown to alter immune function in various taxa, which could influence the outcomes of host-parasite interactions. To date, studies have focused on the effects of PFAS on host susceptibility to parasites, but no studies have addressed the effects of PFAS on parasites. To address this knowledge gap, we independently manipulated exposure of larval northern leopard frogs (Rana pipiens) and parasites (flatworms) via their snail intermediate host to environmentally relevant PFAS concentrations and then conducted trials to assess host susceptibility to infection, parasite infectivity, and parasite longevity after emergence from the host. We found that PFAS exposure to only the host led to no significant change in parasite load, whereas exposure of parasites to a 10-µg/L mixture of PFAS led to a significant reduction in parasite load in hosts that were not exposed to PFAS. We found that when both host and parasite were exposed to PFAS there was no difference in parasite load. In addition, we found significant differences in parasite longevity post emergence following exposure to PFAS. Although some PFAS-exposed parasites had greater longevity, this did not necessarily translate into increased infection success, possibly because of impaired movement of the parasite. Our results indicate that exposure to PFAS can potentially impact host-parasite interactions. Environ Toxicol Chem 2024;43:1537-1546. © 2024 SETAC.


Asunto(s)
Interacciones Huésped-Parásitos , Rana pipiens , Animales , Interacciones Huésped-Parásitos/efectos de los fármacos , Rana pipiens/parasitología , Echinostomatidae/efectos de los fármacos , Caracoles/parasitología , Caracoles/efectos de los fármacos , Fluorocarburos/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Ambientales/toxicidad
12.
Vector Borne Zoonotic Dis ; 24(6): 382-389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38364187

RESUMEN

Background: The potential molluscicidal extracts, obtained from indigenous plants Cannabis sativa, Acacia nilotica, and Tinospora cordifolia, were tested for toxicity against freshwater pulmonate snail Lymnaea acuminata, an intermediate host of Fasciola hepatica. The organic extracts had a significant effect on young snails. Materials and Methods: All organic extracts and column-purified fractions gave median lethal concentrations (19-100.05 mg/L; 24 h) that fell well within the threshold level of 100 mg/L, set for a potential molluscicide by the World Health Organization. Results: The toxicity of T. cordifolia stem acetone extract (96 h LC50: 16.08 mg/L) was more pronounced compared with C. sativa leaf ethanol extract (96 h LC50: 16.32 mg/L) and A. nilotica leaf ethanol extract (96 h LC50: 24.78 mg/L). ß-caryophyllene, gallic acid, and berberine were characterized and identified as active molluscicidal components. Co-migration of ß-caryophyllene (retardation factor [Rf] 0.95), gallic acid (Rf 0.30), and berberine (Rf 0.23) with column-purified parts of Cannabis sativa, Acacia nilotica, and Tinospora cordifolia on thin-layer chromatography demonstrates same Rf value, that is, 0.95, 0.30, and 0.23, respectively. Conclusion: This study indicates that these extracts thus represent potential plant-derived molluscicides that are worthy of further investigations.


Asunto(s)
Acacia , Cannabis , Moluscocidas , Extractos Vegetales , Tinospora , Animales , Tinospora/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Acacia/química , Moluscocidas/farmacología , Cannabis/química , Hojas de la Planta/química , Lymnaea/efectos de los fármacos , Fasciola/efectos de los fármacos , Caracoles/parasitología , Caracoles/efectos de los fármacos
13.
Microsc Res Tech ; 87(7): 1453-1466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38407429

RESUMEN

Aluminum (Al) is used in everyday life and present in food drugs, packaging, industry, and agriculture. Although it is the most common metal in the Earth crust, a correlation has been demonstrated between its presence and various pathologies, even serious ones, especially of a neurological type. However, there is a histological gap regarding the role Al can have in contact with the covering and secreting epithelia. The alterations of the ventral and dorsal foot mucocytes and their secretions of the snail Eobania vermiculata caused by Al were investigated in situ by histochemical and lectin-histochemical techniques. Administration to different experimental groups took place for 3 and 9 days with 50 and 200 µM of AlCl3. Several types of mucocytes were detected with a prevalent secretion of acid glycans in the foot of E. vermiculata. Sulfated glycans prevail in the dorsal region, with one type showing only fucosylated residues and another also having galactosaminylated and glycosaminylated residues. Carboxylated glycans prevail in the ventral region, with presence of galactosaminylated, glycosaminylated, and fucosylated residuals in both cells. Snails treated presented a general decrease of mucin amount in the secreting cells and affected the mucus composition. These changes could alter the rheological and functional properties of the mucus with possible implications for the health of the treated animals. RESEARCH HIGHLIGHTS: Snails were fed with Al-contaminated lettuce at different concentrations. In the foot mucocytes produced mucus with prevailing acidic glycans. In the treated resulted a reduction in the amount of mucus and an alteration of glycan composition.


Asunto(s)
Aluminio , Moco , Caracoles , Animales , Caracoles/efectos de los fármacos , Caracoles/química , Moco/química , Moco/metabolismo , Moco/efectos de los fármacos , Aluminio/toxicidad , Polisacáridos/farmacología , Mucinas/metabolismo , Lectinas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-34597778

RESUMEN

The widespread occurrence of Mercury (Hg) and its derivatives in the aquatic environment and risks to the health of local populations has necessitated investigations into its toxic effects on sessile species. The toxicity of Mercury was observed sequentially from 96 h acute exposure regime (behavioural endpoints) to chronic durations (haematological and biochemical toxicity endpoints) in Bellamya bengalensis. Time-dependent lethal endpoints for acute toxicity (LC50) of mercury i.e., 24,48,72 and 96 h were estimated as 0.94, 0.88, 0.69 and 0.40 mg/l respectively. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration) and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were found to be 0.10, 0.05, 0.039 mg/l respectively. The study of oxygen consumption rate and behavioural changes during acute toxicity and haematological and biochemical responses during chronic toxicity to sublethal concentrations (10% and 20% of 96 h LC50) of mercury to the snail were also conducted. The organisms showed initial elevation at 24 h but later gradual decrease in oxygen consumption rate with the increase of concentration of mercury and time of exposure. For behavioural studies, variable test concentrations from 0.00 to 1.00 mg/l were used for 24, 48, 72 and 96 h. The crawling activity and clumping tendency decreased with the progress of time at all treatment periods and stopped ultimately at 96 h of exposure from 0.7 mg/l onwards whereas touch reflex was not observed at 96 h exposure at all treatments except at 0.09 mg/l. In haemocyte count, no significant variation was observed among control values between various exposure periods (p > 0.05) though variations were observed in sub-lethal concentrations versus control at all treatment duration (7, 14, 21, 28d, p < 0.05). In biochemical response study, the protein content in hepatopancreas of the snails treated at sublethal concentrations of mercury (10% and 20% of 96 h LC50) reduced significantly versus control after 21d of exposure (p < 0.05). In gonads, the protein content of the treated snails significantly reduced at all treatment concentrations versus control at all exposure times (p < 0.05). Based on the safe levels indicated above, the concentration of 0.01 to 0.04 ppm of mercury can be considered safe for Bellamya bengalensis and any less-hardy aquatic species. These responses elicited by our molluscan model will not only help in biomonitoring of environmental mercury contamination in water bodies but will also provide support to ecological health and risk assessment.


Asunto(s)
Monitoreo del Ambiente/métodos , Mercurio/toxicidad , Caracoles , Contaminantes Químicos del Agua/toxicidad , Animales , Caracoles/efectos de los fármacos , Caracoles/metabolismo
15.
Environ Toxicol Pharmacol ; 89: 103789, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34954125

RESUMEN

There is limited information on fluoride toxicity and risk overview on ecotoxicological risks to aquatic invertebrate populations particularly molluscan taxa. This necessitated the assessment of toxicity responses in the freshwater snail, Bellamya bengalensis exposed to environmentally relevant concentrations of sodium fluoride. Under lethal exposures (150, 200, 250, 300, 400 and 450 mg/l), the median lethal concentrations (LC50) were determined to be 422.36, 347.10, 333.33 and 273.24 mg/l for B. bengalensis at 24, 48, 72 and 96 h respectively. The rate of mortality of the snails was increased significantly with elevated concentrations of the toxicant. The magnitude of toxicity i.e., toxicity factor at different time scale was also higher with increased exposure duration. Altered behavioural changes i.e., crawling movement, tentacle movement, clumping tendency, touch reflex and mucous secretion in exposed snail with elevated concentrations and exposure duration. Similarly, oxygen consumption rate of the treated snail also lowered significantly during 72 and 96 h of exposure. Under 30-day chronic exposures (Control-0.00 mg/L; T1-27.324 mg/L; T2-54.648 mg/L), protein concentrations in gonad and hepatopancreas of exposure groups was significantly lowered. Chronic exposures also revealed lowered haemocytes counts in exposure groups. The potential for loss of coordination, respiratory distress and physiological disruption in organisms exposed to environmentally relevant concentrations of fluoride was demonstrated by this study. The estimation and magnitude of toxicity responses are necessary for a more accurate estimation of ecological risks to molluscan taxa and invertebrate populations under acute and chronic fluoride exposures in the wild.


Asunto(s)
Caracoles/efectos de los fármacos , Fluoruro de Sodio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores , Gónadas/química , Hemocitos/efectos de los fármacos , Hepatopáncreas/química , Consumo de Oxígeno/efectos de los fármacos , Proteínas/análisis , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
16.
Environ Toxicol Pharmacol ; 88: 103753, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34628031

RESUMEN

The tributyltin (TBT)-mediated induction of imposex in marine snails is considered a common mechanism of endocrine disruption through the retinoid X receptor (RXR)-dependent pathway. However, there is evidence that regulation of RXR also relates to metabolic processes, differentiation, apoptosis, and embryonic development, playing a key role in molluscan neuronal differentiation and organogenesis. In this regard, very little is known about the gastropod Tritia mutabilis especially in relation to the effects of TBT exposure during intracapsular embryonic development. In this study, we have investigated the RXR expression fold changes of T. mutabilis encapsulated embryos exposed to different concentrations (10-10 to 10-12 M) of TBT up to 10 days of treatment. We demonstrate that RXR is sequentially expressed during development and that exposure to the lowest and highest TBT doses induces time-dependent changes in RXR gene transcription. We also show that TBT treatment is associated with global DNA demethylation and reduced DNA-methyltransferase I (DNMT1) expression and activity levels. Overall, our data indicate that RXR has important functions during the early stages of T. mutabilis embryo development and is involved in mediating the potential epigenetic alterations induced by TBT exposure.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Receptores X Retinoide/genética , Caracoles/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Animales , Metilación de ADN/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/genética , Expresión Génica/efectos de los fármacos , Caracoles/genética , Caracoles/crecimiento & desarrollo , Regulación hacia Arriba/efectos de los fármacos
17.
An Acad Bras Cienc ; 93(suppl 4): e20210078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34706007

RESUMEN

The objective of this study was to evaluate the possible relaxing effect of essential oils (EOs) (Aloysia triphylla and Lippia alba) and phytochemicals (citral and linalool) in the gastropod Pomacea canaliculata. Animals were exposed to compounds at the concentrations range of 25-750 µL L-1. Magnesium chloride (MgCl2, 10-50 g L-1) and control group (ethanol 6.75 mL L-1, highest concentration used for treatment dilution) were also tested. The EOs, citral and MgCl2 had no relaxing effect at the concentrations range tested, and citral caused aversive behavior (closure of the operculum) from 90 µL L-1. Exposure to linalool at 25, 50, 100, 200 and 400 µL L-1 relaxed 28, 76, 88, 96 and 100% of the animals, respectively. The concentrations of 25, 50 and 400 µL L-1 differed statistically from each other, while 100 and 200 µL L-1 were equal to 50 and 400 µL L-1. All animals recovered up to 40 min, except at of 400 µL L-1. Linalool is effective for relaxing P. canaliculata and can be useful in management techniques that require relaxation. However, further studies are needed to certify whether linalool is appropriate for maintaining animal welfare in invasive procedures that require total insensitivity.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Lippia , Caracoles/efectos de los fármacos , Verbenaceae , Animales
18.
Acta Trop ; 220: 105945, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33945825

RESUMEN

Schistosomiasis continues to pose significant public health problems in many developing countries. Mass drug administration (MDA) is the most adopted control option but there is increasing evidence for the development of praziquantel-resistant Schistosoma strains. This shortcoming has necessitated the search for other effective methods for the control of schistosomiasis. The breaking of Schistosoma transmission cycles through the application of molluscicides into snail infested freshwater bodies has yielded positive outcomes when integrated with MDA in some countries. However, few of such effective molluscicides are currently available, and where available, their application is restricted due to toxicity concerns. Some nanotized particles with molluscicidal activities against the different stages of snail intermediate hosts of schistosomes have been reported. Importantly, the curcumin-nisin nanoparticle synthesized by our group was very effective and it showed no significant toxicity in a mouse model and brine shrimps. This, therefore, offers the possibility of developing a molluscicide that is not only safe for man but also is environmentally friendly. This paper reviews nanoparticles with molluscicidal potential. The methods of their formulation, activities, probable mechanisms of actions, and their toxicity profiles are discussed. More research should be made in this field as it offers great potential for the development of new molluscicides.


Asunto(s)
Moluscocidas/química , Moluscocidas/farmacología , Nanopartículas/química , Esquistosomiasis/transmisión , Caracoles/efectos de los fármacos , Animales , Curcumina/química , Curcumina/farmacología , Composición de Medicamentos , Humanos , Ratones , Nisina/química , Nisina/farmacología , Esquistosomiasis/prevención & control , Caracoles/fisiología
19.
Chem Biodivers ; 18(5): e2100145, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33780581

RESUMEN

Lantana camara is a troublesome invasive plant introduced to many tropical regions, including Southeast Asia. However, the plant does hold promise as a source of essential oils that may be explored for potential use. Fresh water snails such as Pomacea canaliculata, Gyraulus convexiusculus, and Tarebia granifera can be problematic agricultural pests as well as hosts for parasitic worms. Aedes and Culex mosquitoes are notorious vectors of numerous viral pathogens. Control of these vectors is of utmost importance. In this work, the essential oil compositions, molluscicidal, and mosquito larvicidal activities of four collections of L. camara from north-central Vietnam have been investigated. The sesquiterpene-rich L. camara essential oils showed wide variation in their compositions, not only compared to essential oils from other geographical locations (at least six possible chemotypes), but also between the four samples from Vietnam. L. camara essential oils showed molluscicidal activities comparable to the positive control, tea saponin, as well as other botanical agents. The median lethal concentrations (LC50 ) against the snails were 23.6-40.2 µg/mL (P. canaliculata), 7.9-29.6 µg/mL (G. convexiusculus), and 15.0-29.6 µg/mL (T. granifera). The essential oils showed good mosquito larvicidal activities with 24-h LC50 values of 15.1-29.0 µg/mL, 26.4-53.8 µg/mL, and 20.8-59.3 µg/mL against Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, respectively. The essential oils were more toxic to snails and mosquito larvae than they were to the non-target water bug, Diplonychus rusticus (24-h LC50 =103.7-162.5 µg/mL). Sesquiterpene components of the essential oils may be acting as acetylcholinesterase (AChE) inhibitors. These results suggest that the invasive plant, L. camara, may be a renewable botanical pesticidal agent.


Asunto(s)
Insecticidas/farmacología , Lantana/química , Moluscocidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Caracoles/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Insecticidas/química , Insecticidas/aislamiento & purificación , Modelos Moleculares , Moluscocidas/química , Moluscocidas/aislamiento & purificación , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Vietnam
20.
Arch Environ Contam Toxicol ; 80(2): 461-473, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33528594

RESUMEN

When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.


Asunto(s)
Larva/efectos de los fármacos , Contaminación por Petróleo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Crustáceos , Peces Killi/fisiología , Dosificación Letal Mediana , Louisiana , Hidrocarburos Policíclicos Aromáticos/toxicidad , Salinidad , Caracoles/efectos de los fármacos , Temperatura , Pruebas de Toxicidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA