Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.148
Filtrar
1.
J Mech Behav Biomed Mater ; 155: 106570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762971

RESUMEN

Living organisms form complex mineralized composite architectures that perform a variety of essential functions. These materials are commonly utilized for load-bearing purposes such as structural stability and mechanical strength in combination with high toughness and deformability, which are well demonstrated in various highly mineralized molluscan shell ultrastructures. Here, the mineral components provide the general stiffness to the composites, and the organic interfaces play a key role in providing these biogenic architectures with mechanical superiority. Although numerous studies employed state-of-the-art methods to measure and/or model and/or simulate the mechanical behavior of molluscan shells, our understanding of their performance is limited. This is partially due to the lack of the most fundamental knowledge of their mechanical characteristics, particularly, the anisotropic elastic properties of the mineral components and of the tissues they form. In fact, elastic constants of biogenic calcium carbonate, one of the most common biominerals in nature, is unknown for any organism. In this work, we employ the ultrasonic pulse-echo method to report the elasticity tensor of two common ultrastructural motifs in molluscan shells: the prismatic and the nacreous architectures made of biogenic calcite and aragonite, respectively. The outcome of this research not only provides information necessary for fundamental understanding of biological materials formation and performance, but also yields textbook knowledge on biogenic calcium carbonate required for future structural/crystallographic, theoretical and computational studies.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Elasticidad , Carbonato de Calcio/química , Exoesqueleto/química , Exoesqueleto/metabolismo , Animales , Ensayo de Materiales , Moluscos/química , Fenómenos Biomecánicos , Nácar/química
2.
Chemosphere ; 358: 142226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704039

RESUMEN

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Asunto(s)
Cáscara de Huevo , Retardadores de Llama , Ácido Fítico , Cáscara de Huevo/química , Ácido Fítico/química , Animales , Incendios , Celulosa/química , Carbonato de Calcio/química , Pollos
3.
Sci Total Environ ; 931: 172970, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705293

RESUMEN

Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.


Asunto(s)
Compuestos de Amonio , Carbonato de Calcio , Monitoreo del Ambiente , Nitratos , Nitrificación , Ríos , Contaminantes Químicos del Agua , China , Ríos/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Carbonato de Calcio/química
4.
Chemosphere ; 358: 142212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714251

RESUMEN

The process of removing Ca2+ and Mg2+ ions typically results in the co-precipitation of Ca2+ and Mg2+ along with other salt waste. To improve water treatment efficiency towards a zero-waste goal, it is crucial to separate Ca2+ and Mg2+, and recover them in their purified form. This study proposes a two-step electrochemical approach that separately recovers Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. The first step uses an undivided cell with 3D electrodes and controlled flow directions to selectively precipitate CaCO3 on the electrode, keeping the cell removal efficiency. The second step employs a two-compartment cell with a cationic exchange membrane to recover Mg(OH)2. This approach was evaluated on RO reject water with high Ca2+ to Mg2+ ratio and industrial effluent-polluted groundwater with a low ratio. Treatment of domestic RO reject water using undivided cell specifically recovered 64% of CaCO3, although the low conductivity of the RO reject water limited further Mg2+ recovery. Conversely, treating industrial effluent-polluted groundwater with this two-step process successfully recovered 80% of CaCO3 and 94% of Mg(OH)2. SEM, EDAX, and XRD analysis confirmed the quality of the recovered products.


Asunto(s)
Carbonato de Calcio , Técnicas Electroquímicas , Agua Subterránea , Hidróxido de Magnesio , Contaminantes Químicos del Agua , Purificación del Agua , Carbonato de Calcio/química , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Técnicas Electroquímicas/métodos , Hidróxido de Magnesio/química , Magnesio/química , Eliminación de Residuos Líquidos/métodos
5.
J Environ Manage ; 359: 121048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723498

RESUMEN

The microbially induced calcium carbonate precipitation (MICP) technology is an emerging novel and sustainable technique for soil stabilization and remediation. MICP, a microorganism-mediated biomineralization process, has attracted interest for its potential to enhance soil characteristics. The inclusion of biochar, a carbon-rich substance formed by biomass pyrolysis, adds another degree of intricacy to this process. The study highlights the impact of the combination of biochar and MICP together, using a bacterium, Sporosarcina ureae, on soil improvement. This blend of MICP and biochar improved the soil in terms of its geotechnical properties and also enabled the sequestering of carbon safely. It was observed that addition of 4% biochar significantly increased the soil's shear strength parameters (c and φ) as well as its stiffness after 21 treatment cycles. This improvement was because the calcium carbonate precipitate, which acts as a crucial binding agent, increased significantly due to microbial action in the soil-biochar mixture compared to the pure soil sample. The excess carbonate precipitation on account of biochar addition was verified through SEM-EDAX analysis where the images showed noteworthy carbonate precipitation on the surface of particles and increment in the calcium mass at the same treatment cycles when compared with untreated sand. The collaboration between MICP and biochar effectively increased the carbon sequestration within the sand sample. It was observed that at 21 cycles of treatment, the carbon storage within the sand sample increased by almost 3 times at 4% biochar compared to sand without any biochar. The statistical analysis further affirmed that strength depends on both biochar and the number of treatment cycles, whereas carbon sequestration potential is primarily influenced by the biochar content alone. This strategy, as a sustainable and environmentally friendly approach, has the potential to reform soil improvement practices and contribute to both soil strength enhancement and climate change mitigation, supporting the maintenance of ecological balance.


Asunto(s)
Carbonato de Calcio , Carbón Orgánico , Suelo , Sporosarcina , Carbonato de Calcio/química , Carbón Orgánico/química , Suelo/química , Arena/química
6.
ACS Appl Bio Mater ; 7(5): 2872-2886, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38721671

RESUMEN

Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 µm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 µg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.


Asunto(s)
Antibacterianos , Carbonato de Calcio , Ensayo de Materiales , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas del Metal/química , Humanos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Propiedades de Superficie , Staphylococcus aureus/efectos de los fármacos
7.
Sci Rep ; 14(1): 10309, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705929

RESUMEN

Aplacophoran molluscs are shell-less and have a worm-like body which is covered by biomineralized sclerites. We investigated sclerite crystallography and the sclerite mosaic of the Solenogastres species Dorymenia sarsii, Anamenia gorgonophila, and Simrothiella margaritacea with electron-backscattered-diffraction (EBSD), laser-confocal-microscopy and FE-SEM imaging. The soft tissue of the molluscs is covered by spicule-shaped, aragonitic sclerites. These are sub-parallel to the soft body of the organism. We find, for all three species, that individual sclerites are untwinned aragonite single crystals. For individual sclerites, aragonite c-axis is parallel to the morphological, long axis of the sclerite. Aragonite a- and b-axes are perpendicular to sclerite aragonite c-axis. For the scleritomes of the investigated species we find different sclerite and aragonite crystal arrangement patterns. For the A. gorgonophila scleritome, sclerite assembly is disordered such that sclerites with their morphological, long axis (always the aragonite c-axis) are pointing in many different directions, being, more or less, tangential to cuticle surface. For D. sarsii, the sclerite axes (equal to aragonite c-axes) show a stronger tendency to parallel arrangement, while for S. margaritacea, sclerite and aragonite organization is strongly structured into sequential rows of orthogonally alternating sclerite directions. The different arrangements are well reflected in the structured orientational distributions of aragonite a-, b-, c-axes across the EBSD-mapped parts of the scleritomes. We discuss that morphological and crystallographic preferred orientation (texture) is not generated by competitive growth selection (the crystals are not in contact), but is determined by templating on organic matter of the sclerite-secreting epithelial cells and associated papillae.


Asunto(s)
Moluscos , Animales , Moluscos/química , Carbonato de Calcio/química , Cristalografía/métodos , Biomineralización , Exoesqueleto/química , Microscopía Electrónica de Rastreo
8.
J Mater Chem B ; 12(20): 4867-4881, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666451

RESUMEN

Inflammatory dermatoses represent a global problem with increasing prevalence and recurrence among the world population. Topical glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs in dermatology due to a wide range of their therapeutic actions, which, however, have numerous local and systemic side effects. Hence, there is a growing need to create new delivery systems for GCs, ensuring the drug localization in the pathological site, thus increasing the effectiveness of therapy and lowering the risk of side effects. Here, we propose a novel topical particulate formulation for the GC clobetasol propionate (CP), based on the use of porous calcium carbonate (CaCO3) carriers in the vaterite crystalline form. The designed carriers contain a substantially higher CP amount than conventional dosage forms used in clinics (4.5% w/w vs. 0.05% w/w) and displayed a good biocompatibility and effective cellular uptake when studied in fibroblasts in vitro. Hair follicles represent an important reservoir for the GC accumulation in skin and house the targets for its action. In this study, we demonstrated successful delivery of the CP-loaded carriers (CP-CaCO3) into the hair follicles of rats in vivo using optical coherent tomography (OCT). Importantly, the OCT monitoring revealed the gradual intrafollicular degradation of the carriers within 168 h with the most abundant follicle filling occurring within the first 48 h. Biodegradability makes the proposed system especially promising when searching for new CP formulations with improved safety and release profile. Our findings evidenced the great potential of the CaCO3 carriers in improving the dermal bioavailability of this poorly water-soluble GC.


Asunto(s)
Carbonato de Calcio , Clobetasol , Portadores de Fármacos , Clobetasol/química , Clobetasol/administración & dosificación , Clobetasol/farmacología , Carbonato de Calcio/química , Animales , Ratas , Portadores de Fármacos/química , Administración Tópica , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Tamaño de la Partícula
9.
Food Chem ; 451: 139205, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653102

RESUMEN

Sodium alginate hydrogel beads and sodium alginate/gellan gum composite hydrogel beads crosslinked by calcium chloride were prepared with different alginate concentrations (3-20 mg·mL-1). Additionally, a simple method for growing CaCO3in situ on the hydrogel to create novel inorganic-organic hybrid hydrogel beads was presented. FT-IR analysis revealed the involvement of hydrogen bonding and electrostatic interactions in bead formation. Swelling behavior in acidic conditions showed a maximum of 13 g/g for composite hydrogels and CaCO3-incorporated hybrid hydrogels. Lactoferrin encapsulation efficiency within these hydrogels ranged from 44.9 to 56.6%. In vitro release experiments demonstrated that these hydrogel beads withstand harsh gastric environments with <16% cumulative release of lactoferrin, achieving controlled release in intestinal surroundings. While composite sodium alginate/gellan gum beads exhibited slower gastrointestinal lactoferrin digestion, facile synthesis and pH responsiveness of CaCO3-incorporated hybrid hydrogel also provide new possibilities for future studies to construct a novel inorganic-organic synergetic system for intestinal-specific oral delivery.


Asunto(s)
Alginatos , Carbonato de Calcio , Hidrogeles , Lactoferrina , Alginatos/química , Carbonato de Calcio/química , Hidrogeles/química , Lactoferrina/química , Lactoferrina/administración & dosificación , Humanos , Administración Oral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno
10.
J Mater Chem B ; 12(19): 4642-4654, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592460

RESUMEN

The therapeutic efficacy of Fenton or Fenton-like nanocatalysts is usually restricted by the inappropriate pH value and limited concentration of hydrogen peroxide (H2O2) at the tumor site. Herein, calcium carbonate (CaCO3)-mineralized cobalt silicate hydroxide hollow nanocatalysts (CSO@CaCO3, CC) were synthesized and loaded with curcumin (CCC). This hybrid system can simultaneously realize nanocatalytic therapy, chemotherapy and calcium overload. With the stabilization of liposomes, CCC is able to reach the tumor site smoothly. The CaCO3 shell first degrades in an acidic tumor environment, releasing Cur and Ca2+, and the pH value of the tumor is increased simultaneously. Then the exposed CSO catalyzes the Fenton-like reaction to convert H2O2 into ˙OH and enhances the cytotoxicity of curcumin (Cur) by catalytically oxidizing it to a ˙Cur radical. Curcumin not only induces the chemotherapy effect but also serves as a nucleophilic ligand and an electron donor in the catalytic system, enhancing the Fenton-like activity of CCC by electron transfer. In addition, calcium overload also amplifies the efficacy of ROS-based therapy. In vitro and in vivo results show that CCC exhibited an excellent synergistic tumor inhibition effect without any clear side effect. This work proposes a novel concept of nanocatalytic therapy/chemotherapy synergistic mechanism by the ligand-induced enhancement of Fenton-like catalytic activity, and inspires the construction of combined therapeutic nanoplatforms and multifunctional nanocarriers for drug and ion delivery in the future.


Asunto(s)
Antineoplásicos , Calcio , Cobalto , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacología , Cobalto/química , Cobalto/farmacología , Humanos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones , Calcio/química , Calcio/metabolismo , Nanopartículas/química , Catálisis , Carbonato de Calcio/química , Ligandos , Tamaño de la Partícula , Ratones Endogámicos BALB C , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Femenino , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
11.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581094

RESUMEN

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Asunto(s)
Carbonato de Calcio , Ácidos Nicotínicos , Sporosarcina , Carbonato de Calcio/química , Ureasa/metabolismo , Biomasa , Urea/química , Urea/metabolismo , Vitaminas , Aminoácidos , Glucosa
12.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598997

RESUMEN

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Asunto(s)
Carbonato de Calcio , Glucosa Oxidasa , Compuestos de Manganeso , Óxidos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Animales , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Carbonato de Calcio/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Povidona/química , Povidona/farmacología , Hipoxia Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Línea Celular Tumoral , Peróxido de Hidrógeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Propiedades de Superficie , Ratones Endogámicos BALB C
13.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670641

RESUMEN

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Asunto(s)
Carbonato de Calcio , Diferenciación Celular , Células Madre Mesenquimatosas , Fibras Musculares Esqueléticas , Osteogénesis , Ingravidez , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Carbonato de Calcio/química , Células Cultivadas , Vuelo Espacial , Ratones
14.
Chem Asian J ; 19(10): e202400198, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38558255

RESUMEN

The ideal and highly anticipated dressing for skin wounds should provide a moist environment, possess antibacterial properties, and ensure sustained drug release. In the present work, a hyaluronic acid-based hydrogel was formed by cross-linking crocetin and CaCO3@polyelectrolyte materials (CaCO3@PEM) microspheres with HA hydrogels via hydrogen bond and amido bonding (CaCO3@PEM@Cro@HA hydrogel, CPC@HA hydrogel). Moreover, the CPC@HA hydrogel had the capability of sustained, controlled release of calcium ions and crocetin via pH-sensitive and accelerated skin wound healing. The experiment results showed that the CPC@HA hydrogel exhibited porous network structures, stable physical properties, and had antibacterial properties and biocompatibility in vitro. In addition, the CPC@HA hydrogel covering on the skin wound could reduce inflammation and promote wound healing. The high expression of angiogenic cytokines (CD31) and epidermal terminal differentiation markers (Loricrin) of wound healing tissue suggested the CPC@HA hydrogel also had the function of promoting the remodeling of regenerated skin. Overall, CPC@HA hydrogel has promising potential for clinical applications in accelerating skin wound repair.


Asunto(s)
Calcio , Carotenoides , Hidrogeles , Vitamina A , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Vitamina A/análogos & derivados , Vitamina A/farmacología , Vitamina A/química , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Calcio/metabolismo , Animales , Carotenoides/química , Carotenoides/farmacología , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Liberación de Fármacos , Ratones , Iones/química , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
15.
Sci Rep ; 14(1): 8752, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627410

RESUMEN

The main challenge in the large-scale application of MICP lies in its low efficiency and promoting biofilm growth can effectively address this problem. In the present study, a prediction model was proposed using the response surface method. With the prediction model, optimum concentrations of nutrients in the medium can be obtained. Moreover, the optimized medium was compared with other media via bio-cementation tests. The results show that this prediction model was accurate and effective, and the predicted results were close to the measured results. By using the prediction model, the optimized culture media was determined (20.0 g/l yeast extract, 10.0 g/l polypeptone, 5.0 g/l ammonium sulfate, and 10.0 g/l NaCl). Furthermore, the optimized medium significantly promoted the growth of biofilm compared to other media. In the medium, the effect of polypeptone on biofilm growth was smaller than the effect of yeast extract and increasing the concentration of polypeptone was not beneficial in promoting biofilm growth. In addition, the sand column solidified with the optimized medium had the highest strength and the largest calcium carbonate contents. The prediction model represents a platform technology that leverages culture medium to impart novel sensing, adjustive, and responsive multifunctionality to structural materials in the civil engineering and material engineering fields.


Asunto(s)
Carbonato de Calcio , Cementación , Carbonato de Calcio/química , Arena , Precipitación Química
16.
Chemosphere ; 357: 142071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641290

RESUMEN

To overcome the global water shortage, the treated wastewater is increasingly utilized in agricultural irrigation, and thus reducing freshwater consumption and increasing the water sustainability. Drip irrigation technology is the most appropriate irrigation method to utilize these water sources. However, its operating performance is negatively affected by calcium carbonate (CaCO3) scaling, which is one of the most dominant precipitations and also closely related to dissolved ions and the hydraulic characteristics inside irrigation systems. Thus, the effects of eight common dissolved ions (K+, Mg2+, Mn2+, Zn2+, Fe3+, NO3-, SO42-, and PO43-) in these water sources and four hydraulic shear stresses (0, 0.2, 0.4, and 0.6 Pa) on CaCO3 scaling formation were assessed in this study. Results showed that CaCO3 scaling was primarily formed of calcite and aragonite. Fe3+ would significantly accelerate the CaCO3 scaling accumulation, as it reduced the unit cell volume and chemical bonds of calcite, enhancing calcite adhesion and stability. On the other hand, Mg2+, Mn2+, NO3-, SO42-, and PO43- significantly inhibited CaCO3 scaling. Among them, Mg2+, Mn2+, and PO43- followed the typical water chemical precipitation rule, while NO3- increased water molecule diffusion rate and thus decreased the possibility that Ca2+ and CO32- to precipitate. SO42- grabbed the binding point belonging to CO32- and was adsorbed on the calcite crystal, which inhibited crystal growth. However, those treatments under K+ and Zn2+ did not reach a significant level due to their solubleness. During the precipitation of CaCO3, there were significant (p < 0.01) interactions between dissolved ions and hydraulic shear stresses. When hydraulic shear stresses varied, the effects of Fe3+ and SO42- on the CaCO3 scaling were relatively weakened, while that of Mg2+ was relatively strengthened. In return, dissolved ions affected the effect of hydraulic shear stresses on CaCO3 scaling. Overall, the results obtained could provide theoretical reference for high-efficiency utilization of treated wastewater for agricultural irrigation through the management of CaCO3 scaling.


Asunto(s)
Carbonato de Calcio , Aguas Residuales , Carbonato de Calcio/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Iones/química , Riego Agrícola/métodos , Precipitación Química
17.
J Hazard Mater ; 471: 134344, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678706

RESUMEN

More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 µM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.


Asunto(s)
Carbonato de Calcio , Hierro , Minería , Sulfuros , Carbonato de Calcio/química , Hierro/química , Sulfuros/química , Secuencias Repetitivas Esparcidas , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
18.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606767

RESUMEN

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Pinctada , Tropomiosina , Animales , Pinctada/química , Pinctada/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
19.
Chemosphere ; 356: 141913, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582164

RESUMEN

Rubber wastewater contains variable low pH with a high load of nutrients such as nitrogen, phosphorous, suspended solids, high biological oxygen demand (BOD), and chemical oxygen demand (COD). Ureolytic and biofilm-forming bacterial strains Bacillus sp. OS26, Bacillus cereus OS36, Lysinibacillus macroides ST13, and Burkholderia multivorans DF12 were isolated from rubber processing centres showed high urease activity. Microscopic analyses evaluated the structural organization of biofilm. Extracellular polymeric substances (EPS) matrix of the biofilm of the strains showed the higher abundance of polysaccharides and lipids which help in the attachment and absorption of nutrients. The functional groups of polysaccharides, proteins, and lipids present in EPS were revealed by ATR-FTIR and 1H NMR. A consortium composed of B. cereus OS36, L. macroides ST13, and B. multivorans DF12 showed the highest biofilm formation, and efficiently reduced 62% NH3, 72% total nitrogen, and 66% PO43-. This consortium also reduced 76% BOD, 61% COD, and 68% TDS. After bioremediation, the pH of the remediated wastewater increased to 11.19. To reduce the alkalinity of discharged wastewater, CaCl2 and urea were added for calcite reaction. The highest CaCO3 precipitate was obtained at 24.6 mM of CaCl2, 2% urea, and 0.0852 mM of nickel (Ni2+) as a co-factor which reduced the pH to 7.4. The elemental composition of CaCO3 precipitate was analyzed by SEM-EDX. XRD analysis of the bacterially-induced precipitate revealed a crystallinity index of 0.66. The resulting CaCO3 precipitate was used as soil stabilizer. The precipitate filled the void spaces of the treated soil, reduced the permeability by 80 times, and increased the compression by 8.56 times than untreated soil. Thus, CaCO3 precipitated by ureolytic and biofilm-forming bacterial consortium through ureolysis can be considered a promising approach for neutralization of rubber wastewater and soil stabilization.


Asunto(s)
Biodegradación Ambiental , Biopelículas , Carbonato de Calcio , Goma , Aguas Residuales , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Suelo/química , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Urea/metabolismo , Ureasa/metabolismo
20.
Int J Biol Macromol ; 267(Pt 2): 131554, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615864

RESUMEN

Cuttlefish bone biowaste is a potential source of a composite matrix based on chitin and aragonite. In the present work, we propose for the first time the elaboration of biocomposites based on chitosan and aragonite through the valorization of bone waste. The composition of the ventral and dorsal surfaces of bone is well studied by ICP-OES. An extraction process has been applied to the dorsal surface to extract ß-chitin and chitosan with controlled physico-chemical characteristics. In parallel, aragonite isolation was carried out on the ventral side. The freeze-drying method was used to incorporate aragonite into the chitosan polymer to form CHS/ArgS biocomposites. Physicochemical characterizations were performed by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, potentiometry and viscometry. The ICP-OES method was used to evaluate in vitro the bioactivity level of biocomposite in simulated human plasma (SBF), enabling analysis of the interactions between the material and SBF. The results obtained indicate that the CHS/ArgS biocomposite derived from cuttlefish bone exhibits bioactivity, and that chitosan enhances the bioactivity of aragonite. The CHS/ArgS biocomposite showed excellent ability to form an apatite layer on its surface. After three days' immersion, FTIR and SEM analyses confirmed the formation of this layer.


Asunto(s)
Materiales Biocompatibles , Carbonato de Calcio , Quitosano , Decapodiformes , Quitosano/química , Decapodiformes/química , Animales , Carbonato de Calcio/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Huesos/química , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Químicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA