Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.237
Filtrar
1.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
2.
Diabetes Res Clin Pract ; 206: 111014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977551

RESUMEN

OBJECT: The highly conserved α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is the key enzyme that regulates the de novo NAD+ synthesis from tryptophan. NAD+ metabolism in diabetic cardiomyopathy (DCM) was not elucidated yet. METHODS: Mice were assigned to non-diabetic (NDM) group, streptozocin (STZ)-induced diabetic (DM) group, and nicotinamide (NAM) treated (DM + NAM) group. ACMSD mediated NAD+ metabolism were studied both in mice and patients with diabetes. RESULTS: NAD+ level was significantly lower in the heart of DM mice than that of the NDM group. Supplementation with NAM could partially increased myocardial capillary density and ameliorated myocardial fibrosis by increasing NAD+ level through salvage pathway. Compared with NDM mice, the expression of ACMSD in myocardial endothelial cells of DM mice was significantly increased. It was further confirmed that in endothelial cells, high glucose promoted the expression of ACMSD. Inhibition of ACMSD could increase de novo NAD+ synthesis and improve endothelial cell function by increasing Sirt1 activity. Targeted mass spectrometry analysis indicated increased ACMSD enzyme activity in diabetic patients, higher ACMSD activity increased risk of heart diastolic dysfunction. CONCLUSION: In summary, increased expression of ACMSD lead to impaired de novo NAD+ synthesis in diabetic heart. Inhibition of ACMSD could potentially improve DCM.


Asunto(s)
Carboxiliasas , Cardiomiopatías Diabéticas , Animales , Humanos , Ratones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Células Endoteliales/metabolismo , NAD/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo
3.
J Biol Chem ; 299(5): 104659, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997087

RESUMEN

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Asunto(s)
Carboxiliasas , Malaria , Fosfolípidos , Plasmodium , Secuencias de Aminoácidos , Calcio/metabolismo , Calcio/farmacología , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/metabolismo , Precursores Enzimáticos/metabolismo , Liposomas , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacología , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacología , Fosfatidilgliceroles/metabolismo , Fosfatidilgliceroles/farmacología , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/farmacología , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Unión Proteica , Malaria/parasitología , Proteolisis/efectos de los fármacos , Resonancia por Plasmón de Superficie , Plasmodium/enzimología
4.
Leukemia ; 36(2): 383-393, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34344987

RESUMEN

Acute myeloid leukemia (AML) is a devastating disease, and clinical outcomes are still far from satisfactory. Here, to identify novel targets for AML therapy, we performed a genome-wide CRISPR/Cas9 screen using AML cell lines, followed by a second screen in vivo. We show that PAICS, an enzyme involved in de novo purine biosynthesis, is a potential target for AML therapy. AML cells expressing shRNA-PAICS exhibited a proliferative disadvantage, indicating a toxic effect of shRNA-PAICS. Treatment of human AML cells with a PAICS inhibitor suppressed their proliferation by inhibiting DNA synthesis and promoting apoptosis and had anti-leukemic effects in AML PDX models. Furthermore, CRISPR/Cas9 screens using AML cells in the presence of the inhibitor revealed genes mediating resistance or synthetic lethal to PAICS inhibition. Our findings identify PAICS as a novel therapeutic target for AML and further define components of de novo purine synthesis pathway and its downstream effectors essential for AML cell survival.


Asunto(s)
Sistemas CRISPR-Cas , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Purinas/metabolismo , Animales , Apoptosis , Proliferación Celular , Estudio de Asociación del Genoma Completo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Med ; 10(18): 6442-6455, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34472721

RESUMEN

Rhabdomyosarcoma exhibits tumor-specific energy metabolic changes that include the Warburg effect. Since targeting cancer metabolism is a promising therapeutic approach, we examined the antitumor effects of suppressing lipid metabolism in rhabdomyosarcoma. We suppressed lipid metabolism in rhabdomyosarcoma cells in vitro by administering an inhibitor of malonyl-CoA decarboxylase, which increases malonyl-CoA and decreases fatty acid oxidation. Suppression of lipid metabolism in rhabdomyosarcoma cells decreased cell proliferation by inducing cell cycle arrest. Metabolomic analysis showed an increase in glycolysis and inactivation of the pentose phosphate pathway. Immunoblotting analysis revealed upregulated expression of the autophagy marker LC3A/B-II due to increased phosphorylation of AMP-activated protein kinase, a nutrient sensor. p21 protein expression level also increased. Inhibition of both lipid metabolism and autophagy suppressed tumor proliferation and increased apoptosis. In vivo studies involved injection of human Rh30 cells into the gastrocnemius muscle of 6-week-old female nude mice, which were divided into normal chow and low-fat diet groups. The mice fed a low-fat diet for 21 days showed reduced tumor growth compared to normal chow diet-fed mice. Suppression of lipid metabolism disrupted the equilibrium of the cancer-specific metabolism in rhabdomyosarcoma, resulting in a tumor growth-inhibition effect. Therefore, the development of treatments focusing on the lipid dependence of rhabdomyosarcoma is highly promising.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboxiliasas/antagonistas & inhibidores , Dieta con Restricción de Grasas , Metabolismo de los Lípidos/efectos de los fármacos , Rabdomiosarcoma/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carboxiliasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada/métodos , Ácidos Grasos/metabolismo , Femenino , Humanos , Macrólidos/farmacología , Macrólidos/uso terapéutico , Malonil Coenzima A/metabolismo , Ratones , Músculo Esquelético/patología , Oxidación-Reducción/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Rabdomiosarcoma/patología , Rabdomiosarcoma/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Toxicol Lett ; 349: 115-123, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089817

RESUMEN

Cisplatin, the most widely used platinum-based anticancer drug, often causes progressive and irreversible sensorineural hearing loss in cancer patients. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. Nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin family and PARPs, has emerged as a potent therapeutic molecular target in various diseases. In our investigates, we observed that NAD+ level was changed in the cochlear explants of mice treated with cisplatin. Supplementation of a specific inhibitor (TES-1025) of α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a rate-limiting enzyme of NAD+de novo synthesis pathway, promoted SIRT1 activity, increased mtDNA contents and enhanced AMPK expression, thus significantly reducing hair cells loss and deformation. The protection was blocked by EX527, a specific SIRT1 inhibitor. Meanwhile, the use of NMN, a precursor of NAD+ salvage synthesis pathway, had shown beneficial effect on hair cell under cisplatin administration, effectively suppressing PARP1. In vivo experiments confirmed the hair cell protection of NAD+ modulators in cisplatin treated mice and zebrafish. In conclusion, we demonstrated that modulation of NAD+ biosynthesis via the de novo synthesis pathway and the salvage synthesis pathway could both prevent ototoxicity of cisplatin. These results suggested that direct modulation of cellular NAD+ levels could be a promising therapeutic approach for protection of hearing from cisplatin-induced ototoxicity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva/prevención & control , Audición/efectos de los fármacos , NAD/biosíntesis , Ototoxicidad/prevención & control , Sirtuina 1/metabolismo , Animales , Animales Modificados Genéticamente , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo , Cisplatino , Modelos Animales de Enfermedad , Activación Enzimática , Células Ciliadas Auditivas/enzimología , Células Ciliadas Auditivas/patología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/enzimología , Pérdida Auditiva/fisiopatología , Sistema de la Línea Lateral/efectos de los fármacos , Sistema de la Línea Lateral/enzimología , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Ototoxicidad/enzimología , Ototoxicidad/etiología , Ototoxicidad/fisiopatología , Pez Cebra
7.
ACS Chem Biol ; 16(6): 1030-1039, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33984234

RESUMEN

A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and ß-Ala as substrates. ß-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.


Asunto(s)
Antituberculosos/farmacología , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Pirazinamida/análogos & derivados , Antituberculosos/química , Carboxiliasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/química , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
8.
Nat Commun ; 12(1): 143, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420031

RESUMEN

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Carboxiliasas/antagonistas & inhibidores , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Péptido Sintasas/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/ultraestructura , Coenzima A/biosíntesis , Cristalografía por Rayos X , Pruebas de Enzimas , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptido Sintasas/ultraestructura , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
9.
J Med Chem ; 64(1): 797-811, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33369426

RESUMEN

In the kynurenine pathway for tryptophan degradation, an unstable metabolic intermediate, α-amino-ß-carboxymuconate-ε-semialdehyde (ACMS), can nonenzymatically cyclize to form quinolinic acid, the precursor for de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+). In a competing reaction, ACMS is decarboxylated by ACMS decarboxylase (ACMSD) for further metabolism and energy production. Therefore, the inhibition of ACMSD increases NAD+ levels. In this study, an Food and Drug Administration (FDA)-approved drug, diflunisal, was found to competitively inhibit ACMSD. The complex structure of ACMSD with diflunisal revealed a previously unknown ligand-binding mode and was consistent with the results of inhibition assays, as well as a structure-activity relationship (SAR) study. Moreover, two synthesized diflunisal derivatives showed half-maximal inhibitory concentration (IC50) values 1 order of magnitude better than diflunisal at 1.32 ± 0.07 µM (22) and 3.10 ± 0.11 µM (20), respectively. The results suggest that diflunisal derivatives have the potential to modulate NAD+ levels. The ligand-binding mode revealed here provides a new direction for developing inhibitors of ACMSD.


Asunto(s)
Carboxiliasas/metabolismo , Diflunisal/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Vías Biosintéticas/efectos de los fármacos , Carboxiliasas/antagonistas & inhibidores , Dominio Catalítico , Cristalografía por Rayos X , Diflunisal/análogos & derivados , Diflunisal/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Quinurenina/metabolismo , Simulación del Acoplamiento Molecular , NAD/metabolismo , Pseudomonas fluorescens/enzimología , Relación Estructura-Actividad , Triptófano/metabolismo
10.
Eur J Clin Invest ; 50(10): e13334, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32594513

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) is an essential metabolite in energy metabolism as well as a co-substrate in biochemical reactions such as protein deacylation, protein ADP-ribosylation and cyclic ADP-ribose synthesis mediated by sirtuins, poly (ADP-ribose) polymerases (PARPs) and CD38. In eukaryotic cells, NAD+ is synthesized through three distinct pathways, which offer different strategies to modulate the bioavailability of NAD+ . The therapeutic potential of dietarily available NAD+ boosters preserving the NAD+ pool has been attracting attention after the discovery of declining NAD+ levels in ageing model organisms as well as in several age-related diseases, including cardiometabolic and neurodegenerative diseases. Here, we review the recent advances in the biology of NAD+ , including the salubrious effects of NAD+ boosters and discuss their future translational strategies.


Asunto(s)
Envejecimiento/metabolismo , Inhibidores Enzimáticos/uso terapéutico , NAD/metabolismo , Niacinamida/análogos & derivados , Mononucleótido de Nicotinamida/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Compuestos de Piridinio/uso terapéutico , ADP-Ribosil Ciclasa/antagonistas & inhibidores , ADP-Ribosil Ciclasa/metabolismo , Animales , Vías Biosintéticas , Carboxiliasas/antagonistas & inhibidores , Ensayos Clínicos como Asunto , Microbioma Gastrointestinal , Humanos , NAD/biosíntesis , Niacinamida/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Probióticos , Sirtuinas/metabolismo , Investigación Biomédica Traslacional
11.
Artículo en Inglés | MEDLINE | ID: mdl-32373551

RESUMEN

Current treatments of hepatitis B virus (HBV) are limited to Interferon-alpha or the nucleos(t)ide analogs antiviral therapies, and it is crucial to develop and define new antiviral drugs to cure HBV. In this study, we explored the anti-HBV effect of difluoromethylornithine (DFMO), an irreversibly inhibitor of decarboxylase 1(ODC1) on HBV replication. Firstly, we found that polyamines contributed to HBV DNA replication via increasing levels of the HBV core protein (HBc) and capsids. In contrast, depletion of polyamines either by silencing the expression of ODC1 or DFMO treatment, resulted in decreasing viral DNA replication and levels of HBc protein and capsids. Furthermore, we found that DFMO decreased the stability of the HBc protein without affecting mRNA transcription and protein translation. Taken together, our findings demonstrate that DFMO inhibits HBV replication by reducing HBc stability and this may provide a new approach for HBV therapeutics.


Asunto(s)
Carboxiliasas , Virus de la Hepatitis B , Replicación Viral , Antivirales/farmacología , Carboxiliasas/antagonistas & inhibidores , Replicación del ADN , ADN Viral , Eflornitina/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos
12.
Nat Commun ; 11(1): 1661, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245967

RESUMEN

Pyrazinamide is a sterilizing first-line tuberculosis drug. Genetic, metabolomic and biophysical analyses previously demonstrated that pyrazinoic acid, the bioactive form of the prodrug pyrazinamide (PZA), interrupts biosynthesis of coenzyme A in Mycobacterium tuberculosis by binding to aspartate decarboxylase PanD. While most drugs act by inhibiting protein function upon target binding, we find here that pyrazinoic acid is only a weak enzyme inhibitor. We show that binding of pyrazinoic acid to PanD triggers degradation of the protein by the caseinolytic protease ClpC1-ClpP. Thus, the old tuberculosis drug pyrazinamide exerts antibacterial activity by acting as a target degrader, a mechanism of action that has recently emerged as a successful strategy in drug discovery across disease indications. Our findings provide the basis for the rational discovery of next generation PZA.


Asunto(s)
Antituberculosos/farmacología , Carboxiliasas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Proteolisis/efectos de los fármacos , Pirazinamida/análogos & derivados , Antituberculosos/uso terapéutico , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Farmacorresistencia Bacteriana/genética , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
13.
Biomolecules ; 10(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155745

RESUMEN

The biogenic polyamines, spermine, spermidine (Spd) and putrescine (Put) are present at micro-millimolar concentrations in eukaryotic and prokaryotic cells (many prokaryotes have no spermine), participating in the regulation of cellular proliferation and differentiation. In mammalian cells Put is formed exclusively from L-ornithine by ornithine decarboxylase (ODC) and many potent ODC inhibitors are known. In bacteria, plants, and fungi Put is synthesized also from agmatine, which is formed from L-arginine by arginine decarboxylase (ADC). Here we demonstrate that the isosteric hydroxylamine analogue of agmatine (AO-Agm) is a new and very potent (IC50 3•10-8 M) inhibitor of E. coli ADC. It was almost two orders of magnitude less potent towards E. coli ODC. AO-Agm decreased polyamine pools and inhibited the growth of DU145 prostate cancer cells only at high concentration (1 mM). Growth inhibitory analysis of the Acremonium chrysogenum demonstrated that the wild type (WT) strain synthesized Put only from L-ornithine, while the cephalosporin C high-yielding strain, in which the polyamine pool is increased, could use both ODC and ADC to produce Put. Thus, AO-Agm is an important addition to the set of existing inhibitors of the enzymes of polyamine biosynthesis, and an important instrument for investigating polyamine biochemistry.


Asunto(s)
Acremonium/química , Agmatina , Carboxiliasas , Proteínas de Escherichia coli , Escherichia coli/enzimología , Agmatina/análogos & derivados , Agmatina/química , Animales , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Masculino , Ratones
14.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075281

RESUMEN

Doxorubicin (DXR) is a drug widely used in chemotherapy. Its mode of action is based on its intercalation properties, involving the inhibition of topoisomerase II. However, few studies have reported the mitochondrial effects of DXR while investigating cardiac toxicity induced by the treatment, mostly in pediatric cases. Here, we demonstrate that DXR alters the mitochondrial membrane composition associated with bioenergetic impairment and cell death in human cancer cells. The remodeling of the mitochondrial membrane was explained by phosphatidylserine decarboxylase (PSD) inhibition by DXR. PSD catalyzes phosphatidylethanolamine (PE) synthesis from phosphatidylserine (PS), and DXR altered the PS/PE ratio in the mitochondrial membrane. Moreover, we observed that DXR localized to the mitochondrial compartment and drug uptake was rapid. Evaluation of other topoisomerase II inhibitors did not show any impact on the mitochondrial membrane composition, indicating that the DXR effect was specific. Therefore, our findings revealed a side molecular target for DXR and PSD, potentially involved in DXR anti-cancer properties and the associated toxicity.


Asunto(s)
Carboxiliasas/genética , Doxorrubicina/farmacología , Membranas Mitocondriales/efectos de los fármacos , Neoplasias/genética , Carboxiliasas/antagonistas & inhibidores , Cardiotoxicidad/etiología , Cardiotoxicidad/genética , Cardiotoxicidad/patología , Muerte Celular/efectos de los fármacos , Doxorrubicina/efectos adversos , Células HeLa , Humanos , Membranas Mitocondriales/enzimología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo
15.
Chem Pharm Bull (Tokyo) ; 68(1): 34-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902900

RESUMEN

Enzymatic and post-translational modifications (PTMs) such as ubiquitination, acetylation, and methylation occur at lysine residues. The PTMs play critical roles in the regulation of the protein functions, and thus, various cellular processes. In addition, aberrations of the PTMs are associated with various diseases, such as cancer and neurodegenerative disorders. Therefore, we hypothesized that modulation of the PTMs and normalization of the PTM abnormalities could be useful as methods to control various cellular mechanisms and as a therapeutic strategy, respectively. To modulate the PTMs, we have focused on lysine-modifying enzymes and have pursued drug discovery researches on ubiquitination inducers, lysine deacetylase (KDAC) inhibitors, and lysine demethylase (KDM) inhibitors. For the identification of the modulators, we have used not only conventional drug design, such as structure-based drug design (SBDD) and ligand-based drug design (LBDD), but also "strategic chemistry approaches," such as drug design based on enzyme catalytic mechanism. As a result, we have identified several modulators which have pharmacological effects in animal models or in cellular studies. In this review, focusing on the drug design based on enzyme catalytic mechanism, our drug discovery researches have been discussed.


Asunto(s)
Carboxiliasas/metabolismo , Inhibidores Enzimáticos/química , Histona Demetilasas/metabolismo , Lisina/química , Carboxiliasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Histona Demetilasas/antagonistas & inhibidores , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/metabolismo
16.
J Biomol Struct Dyn ; 38(9): 2704-2716, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31304874

RESUMEN

In the current contribution, a multicomplex-based pharmacophore modeling approach was employed on the structural proteome of Plasmodium falciparum orotidine-5-monophosphate decarboxylase enzyme (PfOMPDC). Among the constructed pharmacophore models, the representative hypotheses were selected as the primary filter to screen the molecules with the complementary features responsible for showing inhibition. Thereafter, auxiliary evaluations were performed on the screened candidates via drug-likeness and molecular docking studies. Subsequently, the stability of the docked protein-ligand complexes was scrutinized by employing molecular dynamics simulations and molecular mechanics-Poisson Boltzmann surface area based free binding energy calculations. The stability the docked candidates was compared with the highly active crystallized inhibitor (3S9Y-FNU) to seek more potential candidates. All the docked molecules displayed stable dynamic behavior and high binding free energy in comparison to 3S9Y-FNU. The employed workflow resulted in the retrieval of five drug-like candidates with diverse scaffolds that may show inhibitory activity against PfOMPDC and could be further used as the novel scaffold to develop novel antimalarials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antimaláricos/farmacología , Carboxiliasas , Inhibidores Enzimáticos , Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Plasmodium falciparum/efectos de los fármacos , Uridina/análogos & derivados
17.
Biochem J ; 476(21): 3125-3139, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31488574

RESUMEN

CoaBC, part of the vital coenzyme A biosynthetic pathway in bacteria, has recently been validated as a promising antimicrobial target. In this work, we employed native ion mobility-mass spectrometry to gain structural insights into the phosphopantothenoylcysteine synthetase domain of E. coli CoaBC. Moreover, native mass spectrometry was validated as a screening tool to identify novel inhibitors of this enzyme, highlighting the utility and versatility of this technique both for structural biology and for drug discovery.


Asunto(s)
Carboxiliasas/química , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Espectrometría de Masas/métodos , Complejos Multienzimáticos/química , Péptido Sintasas/química , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo , Dimerización , Inhibidores Enzimáticos/química , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Cinética , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Péptido Sintasas/antagonistas & inhibidores , Péptido Sintasas/metabolismo , Dominios Proteicos
18.
J Biol Chem ; 294(32): 12146-12156, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227523

RESUMEN

Phosphatidylserine decarboxylases (PSDs) catalyze the decarboxylation of phosphatidylserine to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in both prokaryotes and eukaryotes. Most PSDs are membrane-bound, and classical radioisotope-based assays for determining their activity in vitro are not suitable for high-throughput drug screening. The finding that the PkPSD from Plasmodium knowlesi can be purified in a soluble and active form and the recent development of a fluorescence-based distyrylbenzene-bis-aldehyde (DSB-3) assay to measure PSD activity in vitro have laid the groundwork for screening chemical libraries for PSD inhibitors. Using this assay, here we conducted a high-throughput screen of a structurally diverse 130,858-compound library against PkPSD. Further characterization of the hits identified in this screening yielded five PkPSD inhibitors with IC50 values ranging from 3.1 to 42.3 µm Lead compounds were evaluated against the pathogenic yeast Candida albicans in the absence or presence of exogenous ethanolamine, and YU253467 and YU254403 were identified as inhibiting both native C. albicans PSD mitochondrial activity and C. albicans growth, with an MIC50 of 22.5 and 15 µg/ml without ethanolamine and an MIC50 of 75 and 60 µg/ml with ethanolamine, respectively. Together, these results provide the first proof of principle for the application of DSB-3-based fluorescent readouts in high-throughput screening for PSD inhibitors. The data set the stage for future analyses to identify more selective and potent PSD inhibitors with antimicrobial or antitumor activities.


Asunto(s)
Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Estirenos/química , Candida albicans/efectos de los fármacos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Etanolamina/farmacología , Humanos , Concentración 50 Inhibidora , Fosfatidilserinas/metabolismo , Plasmodium knowlesi/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación
19.
Biochem Biophys Res Commun ; 512(1): 7-13, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30853184

RESUMEN

Fibrosis is a serious health problem often leading to accompanying organ failure. During the manifestation of the disease, an accumulation of different extracellular matrix (ECM) molecules, such as proteoglycans, takes place. There is no appropriate therapeutic option available to heal fibrosis to date. Current research focuses primarily on targets such as the cytokine transforming growth factor-ß1 (TGF-ß1), which is assumed to be one of the key mediators of fibrosis. Both xylosyltransferase isoforms, XT-I and XT-II, catalyze the rate-limiting step of the proteoglycan biosynthesis. Consequently, inhibiting XT activity could be a promising approach to treat fibrosis. It was shown in earlier studies that nucleotides and nucleosides have anti-fibrotic properties and decrease XT activity in cell-free systems. In contrast, we evaluated the mechanisms beyond an UDP-mediated induction of intracellular XT-activity in normal human dermal fibroblasts (NHDF). The observed pseudo-fibrotic XT increasement could be attributed to a compensation of decreased UDP-glucuronate decarboxylase 1 (UXS1) mRNA expression as well as a diminished intracellular UDP-xylose concentration. In summary, our results describe a so far unknown XT-inductive pathway and show that UDP could be a promising molecule for the development of an anti-fibrotic therapy. Nevertheless, XT activity has to be inhibited in parallel intracellularly.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Pentosiltransferasa/biosíntesis , Uridina Difosfato/farmacología , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/genética , Carboxiliasas/metabolismo , Células Cultivadas , Desarrollo de Medicamentos , Inducción Enzimática/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/patología , Fibrosis/tratamiento farmacológico , Fibrosis/enzimología , Fibrosis/patología , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
20.
Nature ; 563(7731): 354-359, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356218

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits spontaneous cyclization of α-amino-ß-carboxymuconate-ε-semialdehyde in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionarily conserved mechanism in Caenorhabditis elegans and mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and sirtuin 1 activity, ultimately enhancing mitochondrial function. We also characterize two potent and selective inhibitors of ACMSD. Because expression of ACMSD is largely restricted to kidney and liver, these inhibitors may have therapeutic potential for protection of these tissues from injury. In summary, we identify ACMSD as a key modulator of cellular NAD+ levels, sirtuin activity and mitochondrial homeostasis in kidney and liver.


Asunto(s)
Carboxiliasas/metabolismo , Secuencia Conservada , Evolución Molecular , Salud , Mitocondrias/fisiología , NAD/biosíntesis , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/deficiencia , Línea Celular , Colina , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Longevidad/efectos de los fármacos , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratas , Sirtuinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA