Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
1.
J Chem Theory Comput ; 20(10): 4218-4228, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38720241

RESUMEN

iso-Orotate decarboxylase (IDCase), which is involved in the thymidine salvage pathway, has attracted considerable interest owing to its chemical similarity to a hypothetical DNA decarboxylase in mammals. Although valuable insights into the active DNA demethylation of 5-methyl-cytosine can be obtained from the decarboxylation mechanism of 5-carboxyl-uracil (5caU) catalyzed by IDCase, this mechanism remains under debate. In this study, the catalytic mechanism of 5caU decarboxylation by IDCase was studied using hybrid quantum mechanics/molecular mechanics (QM/MM) methodologies and density functional theory (DFT) calculations with a truncated model. The calculations supported a mechanism involving three sequential stages: activation of the 5caU substrate via proton transfer from an arginine (R262') to the carboxyl group of 5caU, formation of a tetrahedral intermediate, and decarboxylation of the tetrahedral intermediate to generate uracil as the product. The reaction pathways and structures obtained using the QM/MM and DFT methods coincided with each other. These simulations provided detailed insights into the unique mechanism of IDCase, clarifying various unresolved issues, such as the critical role of R262'. In addition, aspartate D323 was found to act as a general base in the tetrahedral intermediate formation step and a general acid in the later C-C bond cleavage step.


Asunto(s)
Teoría Funcional de la Densidad , Descarboxilación , Simulación de Dinámica Molecular , Teoría Cuántica , Carboxiliasas/química , Carboxiliasas/metabolismo , Biocatálisis , Orotidina-5'-Fosfato Descarboxilasa/química , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Uracilo/química , Uracilo/metabolismo
2.
Adv Sci (Weinh) ; 11(23): e2307779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569221

RESUMEN

Acid-induced arginine decarboxylase AdiA is a typical homo-oligomeric protein biosynthesizing alkaline nylon monomer putrescine. However, upon loss of the AdiA decamer oligomeric state at neutral and alkaline conditions the activity also diminishes, obstructing the whole-cell biosynthesis of alkaline putrescine. Here, a structure cohesion strategy is proposed to change the pH adaptation of AdiA to alkaline environments based on the rational engineering of meridional and latitudinal oligomerization interfaces. After integrating substitutions of E467K at the latitudinal interface and H736E at the meridional channel interface, the structural stability of AdiA decamer and its substrate transport efficiency at neutral and alkaline conditions are improved. Finally, E467K_H736E is well adapted to neutral and alkaline environments (pH 7.0-9.0), and its enzymatic activity is 35-fold higher than that of wild AdiA at pH 8.0. Using E467K_H736E in the putrescine synthesis pathway, the titer of putrescine is up to 128.9 g·L-1 with a conversion of 0.94 mol·mol-1 in whole-cell catalysis. Additionally, the neutral pH adaptation of lysine decarboxylase, with a decamer structure similar to AdiA, is also improved using this cohesion strategy, providing an option for pH-adaptation engineering of other oligomeric decarboxylases.


Asunto(s)
Carboxiliasas , Escherichia coli , Putrescina , Carboxiliasas/metabolismo , Carboxiliasas/genética , Carboxiliasas/química , Concentración de Iones de Hidrógeno , Escherichia coli/metabolismo , Escherichia coli/genética , Putrescina/metabolismo
3.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672479

RESUMEN

Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min-1, and 63,218 min-1 mM-1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci.


Asunto(s)
Carboxiliasas , Streptococcus pneumoniae , Espectrometría de Masas en Tándem , Carboxiliasas/metabolismo , Carboxiliasas/genética , Carboxiliasas/química , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , Cromatografía Líquida de Alta Presión , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Poliaminas/metabolismo , Cinética
4.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624200

RESUMEN

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Asunto(s)
Aspergillus oryzae , Carboxiliasas , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
5.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38653191

RESUMEN

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Asunto(s)
Bacterias , Carboxiliasas , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Bacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Hongos/genética , Hongos/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Biocatálisis , Oxalatos/metabolismo , Oxalatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Regulación Enzimológica de la Expresión Génica , Humanos , Catálisis , Animales
6.
Int J Biol Macromol ; 264(Pt 2): 130662, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453118

RESUMEN

Non-classical secretory proteins are widely found in bacteria and have been extensively studied due to their important physiological roles. However, the relevant non-classical secretory mechanisms remain unclear. In this study, we found that oxalate decarboxylase (Bacm OxDC) from Bacillus mojavensis XH1 belongs to non-classical secretory proteins. Its N-terminus showed high hydrophilicity, which was different from the conventional signal peptide. The truncation test revealed that the deletion of the N-terminus affects the structure resulting in its inability to cross the cell membrane. Further studies verified that the exported peptide YydF played an important role in the secretion process of Bacm OxDC. Experimental results on the secretion mechanism indicated that Bacm OxDC bound to the exported peptide YydF and they are translocated to the cell membrane together, after which Bacm OxDC caused cell membrane relaxation for transmembrane secretion. Thereafter, three recombinant proteins were successfully secreted with certain enzymatic activity by fusing Bacm OxDC as a guide protein with various target proteins. To the best of our knowledge, this was the first time that non-classical secretion mechanism in bacteria has been analyzed. The novel discovery may provide a reference and broaden the horizons of the secretion pathway and expression regulation of proteins.


Asunto(s)
Bacillus , Carboxiliasas , Carboxiliasas/química , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Señales de Clasificación de Proteína
7.
J Biol Chem ; 300(2): 105653, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224946

RESUMEN

The UbiD enzyme family of prenylated flavin (prFMN)-dependent reversible decarboxylases is near ubiquitously present in microbes. For some UbiD family members, enzyme activation through prFMNH2 binding and subsequent oxidative maturation of the cofactor readily occurs, both in vivo in a heterologous host and through in vitro reconstitution. However, isolation of the active holo-enzyme has proven intractable for others, notably the canonical Escherichia coli UbiD. We show that E. coli heterologous expression of the small protein LpdD-associated with the UbiD-like gallate decarboxylase LpdC from Lactobacillus plantarum-unexpectedly leads to 3,4-dihydroxybenzoic acid decarboxylation whole-cell activity. This activity was shown to be linked to endogenous E. coli ubiD expression levels. The crystal structure of the purified LpdD reveals a dimeric protein with structural similarity to the eukaryotic heterodimeric proteasome assembly chaperone Pba3/4. Solution studies demonstrate that LpdD protein specifically binds to reduced prFMN species only. The addition of the LpdD-prFMNH2 complex supports reconstitution and activation of the purified E. coli apo-UbiD in vitro, leading to modest 3,4-dihydroxybenzoic acid decarboxylation. These observations suggest that LpdD acts as a prFMNH2-binding chaperone, enabling apo-UbiD activation through enhanced prFMNH2 incorporation and subsequent oxidative maturation. Hence, while a single highly conserved flavin prenyltransferase UbiX is found associated with UbiD enzymes, our observations suggest considerable diversity in UbiD maturation, ranging from robust autocatalytic to chaperone-mediated processes. Unlocking the full (de)carboxylation scope of the UbiD-enzyme family will thus require more than UbiX coexpression.


Asunto(s)
Carboxiliasas , Hidroxibenzoatos , Lactobacillaceae , Carboxiliasas/genética , Carboxiliasas/química , Escherichia coli/metabolismo , Flavinas/metabolismo , Oxidación-Reducción , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica
8.
J Biol Chem ; 300(2): 105621, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176649

RESUMEN

Phenazine-1-carboxylic acid decarboxylase (PhdA) is a prenylated-FMN-dependent (prFMN) enzyme belonging to the UbiD family of decarboxylases. Many UbiD-like enzymes catalyze (de)carboxylation reactions on aromatic rings and conjugated double bonds and are potentially valuable industrial catalysts. We have investigated the mechanism of PhdA using a slow turnover substrate, 2,3-dimethylquinoxaline-5-carboxylic acid (DQCA). Detailed analysis of the pH dependence and solvent deuterium isotope effects associated with the reaction uncovered unusual kinetic behavior. At low substrate concentrations, a substantial inverse solvent isotope effect (SIE) is observed on Vmax/KM of ∼ 0.5 when reaction rates of DQCA in H2O and D2O are compared. Under the same conditions, a normal SIE of 4.15 is measured by internal competition for proton transfer to the product. These apparently contradictory results indicate that the SIE values report on different steps in the mechanism. A proton inventory analysis of the reaction under Vmax/KM and Vmax conditions points to a "medium effect" as the source of the inverse SIE. Molecular dynamics simulations of the effect of D2O on PhdA structure support that D2O reduces the conformational lability of the enzyme and results in a more compact structure, akin to the active, "closed" conformer observed in crystal structures of some UbiD-like enzymes. Consistent with the simulations, PhdA was found to be more stable in D2O and to bind DQCA more tightly, leading to the observed rate enhancement under Vmax/KM conditions.


Asunto(s)
Carboxiliasas , Carboxiliasas/química , Isótopos , Cinética , Fenazinas , Protones , Solventes , Mycobacteriaceae/enzimología
9.
Int J Biol Macromol ; 260(Pt 1): 129294, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211929

RESUMEN

The UbiD enzymes are proposed to catalyze reversible (de)carboxylation reaction of unsaturated carboxylic acids using prenylated flavin mononucleotide (prFMN) as a cofactor. This positions UbiD enzymes as promising candidates for converting CO2 into valuable chemicals. However, their industrial-scale biotransformation is currently constrained by low conversion rates attributed to thermodynamic limitations. To enhance the carboxylation activity of UbiD enzymes, a molecular-level understanding of the (de)carboxylation mechanisms is necessary. In this study, we investigated the reaction mechanisms of heteroaromatic substrates catalyzed by PtHmfF, PaHudA, and AnlnD enzymes using molecular dynamics (MD) simulations and free energy calculations. Our extensive mechanistic study elucidates the mechanisms involved in the formation of the initial prFMN-substrate intermediate. Specifically, we observed nucleophilic attack during decarboxylation, while carboxylation reactions involving furoic acid, pyrrole, and indole tend to favor a 1,3-dipolar cycloaddition mechanism. Furthermore, we identified proton transfer as the rate-limiting step in the carboxylation reaction. In addition, we considered the perspectives of reaction energies and electron transfer to understand the distinct mechanisms underlying decarboxylation and carboxylation. Our calculated free energies are consistent with available experimental kinetics data. Finally, we explored how different rotamers of catalytic residues influence the efficiency of the initial intermediate formation.


Asunto(s)
Carboxiliasas , Carboxiliasas/química , Prenilación , Mononucleótido de Flavina/metabolismo , Transporte de Electrón , Catálisis
10.
Org Lett ; 25(32): 6035-6039, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37548910

RESUMEN

Thioaldehyde is a highly electrophilic group under aqueous conditions and can be generated via oxidative enzymatic modifications of cysteine residues in peptides and proteins. Herein, we report the installation of thioaldehyde and aldehyde groups at the C-terminus of peptides by flavin-dependent cysteine decarboxylases from the biosynthesis of ribosomally synthesized and post-translationally modified peptides. The in situ generated (thio)aldehyde is utilized as a reactive handle for peptide bioconjugation and macrocyclization.


Asunto(s)
Carboxiliasas , Cisteína , Cisteína/química , Péptidos/química , Carboxiliasas/química , Aldehídos
11.
Biomolecules ; 13(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371526

RESUMEN

Coproheme decarboxylases (ChdCs) are terminal enzymes of the coproporphyrin-dependent heme biosynthetic pathway. In this reaction, two propionate groups are cleaved from the redox-active iron-containing substrate, coproheme, to form vinyl groups of the heme b product. The two decarboxylation reactions proceed sequentially, and a redox-active three-propionate porphyrin, called monovinyl, monopropionate deuteroheme (MMD), is transiently formed as an intermediate. While the reaction mechanism for the first part of the redox reaction, which is initiated by hydrogen peroxide, has been elucidated in some detail, the second part of this reaction, starting from MMD, has not been studied. Here, we report the optimization of enzymatic MMD production by ChdC and purification by reversed-phase chromatography. With the obtained MMD, we were able to study the second part of heme b formation by actinobacterial ChdC from Corynebacterium diphtheriae, starting with Compound I formation upon the addition of hydrogen peroxide. The results indicate that the second part of the decarboxylation reaction is analogous to the first part, although somewhat slower, which is explained by differences in the active site architecture and its H-bonding network. The results are discussed in terms of known kinetic and structural data and help to fill some mechanistic gaps in the overall reaction catalyzed by ChdCs.


Asunto(s)
Carboxiliasas , Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Propionatos/química , Hemo/metabolismo , Carboxiliasas/química
12.
Sci Rep ; 13(1): 10360, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365251

RESUMEN

cis-Aconitate decarboxylase (ACOD1, IRG1) converts cis-aconitate to the immunomodulatory and antibacterial metabolite itaconate. Although the active site residues of human and mouse ACOD1 are identical, the mouse enzyme is about fivefold more active. Aiming to identify the cause of this difference, we mutated positions near the active site in human ACOD1 to the corresponding residues of mouse ACOD1 and measured resulting activities in vitro and in transfected cells. Interestingly, Homo sapiens is the only species with methionine instead of isoleucine at residue 154 and introduction of isoleucine at this position increased the activity of human ACOD1 1.5-fold in transfected cells and 3.5-fold in vitro. Enzyme activity of gorilla ACOD1, which is almost identical to the human enzyme but has isoleucine at residue 154, was similar to the mouse enzyme in vitro. Met154 in human ACOD1 forms a sulfur-π bond to Phe381, which is positioned to impede access of the substrate to the active site. It appears that the ACOD1 sequence has changed at position 154 during human evolution, resulting in a pronounced decrease in activity. This change might have offered a selective advantage in diseases such as cancer.


Asunto(s)
Aminoácidos , Carboxiliasas , Isoleucina , Animales , Humanos , Ratones , Dominio Catalítico , Carboxiliasas/química
13.
J Chem Inf Model ; 63(10): 3118-3127, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37127583

RESUMEN

The enzyme acetoacetate decarboxylase (AAD) has a crucial function in the process of decarboxylating the substrate acetoacetate (AA). It has been extensively studied over the years, but its exact catalytic mechanism has remained partly unsolved due to the difficulty in assessing reaction intermediates. In this study, we combine molecular dynamics and electronic structure calculations to rediscover its catalytic mechanism. Our results show that the presence of the substrate, the acetoacetate, significantly influences the electrostatic potential of the active site. Furthermore, our simulations show that the decarboxylation reaction can take place by means of a direct proton transfer instead of via an enamine intermediate, which is thought to be strictly necessary. This work provides new insights into the role of the electrostatic interactions on the catalytic activity of AAD and for the first time connects it to the catalytic mechanism of other decarboxylases.


Asunto(s)
Acetoacetatos , Carboxiliasas , Bases de Schiff , Carboxiliasas/química , Catálisis
14.
J Inorg Biochem ; 245: 112243, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196412

RESUMEN

This work focuses on the carbon monoxide adducts of the wild-type and selected variants of the coproheme decarboxylase from actinobacterial Corynebacterium diphtheriae complexed with coproheme, monovinyl monopropionyl deuteroheme (MMD), and heme b. The UV - vis and resonance Raman spectroscopies together with the molecular dynamics simulations clearly show that the wild-type coproheme-CO adduct is characterized by two CO conformers, one hydrogen-bonded to the distal H118 residue and the other showing a weak polar interaction with the distal cavity. Instead, upon conversion to heme b, i.e. after decarboxylation of propionates 2 and 4 and rotation by 90o of the porphyrin ring inside the cavity, CO probes a less polar environment. In the absence of the H118 residue, both coproheme and heme b complexes form only the non-H-bonded CO species. The unrotated MMD-CO adduct as observed in the H118F variant, confirms that decarboxylation of propionate 2 only, does not affect the heme cavity. The rupture of both the H-bonds involving propionates 2 and 4 destabilizes the porphyrin inside the cavity with the subsequent formation of a CO adduct in an open conformation. In addition, in this work we present data on CO binding to reversed heme b, obtained by hemin reconstitution of the H118A variant, and to heme d, obtained by addition of an excess of hydrogen peroxide. The results will be discussed and compared with those reported for the representatives of the firmicute clade.


Asunto(s)
Carboxiliasas , Corynebacterium diphtheriae , Monóxido de Carbono/metabolismo , Propionatos/química , Hemo/química , Espectrometría Raman , Carboxiliasas/química
15.
Chembiochem ; 24(16): e202300207, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191502

RESUMEN

Biocatalytic decarboxylation of hydroxycinnamic acids yields phenolic styrenes, which are important precursors for antioxidants, epoxy coatings, adhesives and other polymeric materials. Bacillus subtilis decarboxylase (BsPAD) is a cofactor-independent enzyme that catalyzes the cleavage of carbon dioxide from p-coumaric-, caffeic-, and ferulic acid with high catalytic efficiency. Real-time spectroscopic assays for decarboxylase reactions remove the necessity of extensive sample workup, which is required for HPLC, mass spectrometry, gas chromatography, or NMR methods. This work presents two robust and sensitive assays based on photometry and fluorimetry that allow decarboxylation reactions to be followed with high sensitivity while avoiding product extraction and long analysis times. Optimized assay procedures were used to measure BsPAD activity in cell lysates and to determine the kinetic constants (KM and Vmax ) of the purified enzyme for p-coumaric-, caffeic- and ferulic acid. Substrate inhibition was shown for caffeic acid.


Asunto(s)
Carboxiliasas , Ácidos Cumáricos , Ácidos Cumáricos/química , Carboxiliasas/química , Fluorometría
16.
J Biol Chem ; 299(5): 104659, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997087

RESUMEN

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Asunto(s)
Carboxiliasas , Malaria , Fosfolípidos , Plasmodium , Secuencias de Aminoácidos , Calcio/metabolismo , Calcio/farmacología , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/metabolismo , Precursores Enzimáticos/metabolismo , Liposomas , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacología , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacología , Fosfatidilgliceroles/metabolismo , Fosfatidilgliceroles/farmacología , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/farmacología , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Unión Proteica , Malaria/parasitología , Proteolisis/efectos de los fármacos , Resonancia por Plasmón de Superficie , Plasmodium/enzimología
17.
Biomolecules ; 13(2)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36830604

RESUMEN

Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product.


Asunto(s)
Carboxiliasas , Corynebacterium diphtheriae , Hemo/metabolismo , Enlace de Hidrógeno , Propionatos/química , Peróxido de Hidrógeno/química , Corynebacterium diphtheriae/metabolismo , Carboxiliasas/química
18.
Biochemistry ; 62(1): 53-61, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521056

RESUMEN

Ferulic acid decarboxylase (FDC) catalyzes the reversible carboxylation of various substituted phenylacrylic acids to produce the correspondingly substituted styrenes and CO2. FDC is a member of the UbiD family of enzymes that use prenylated-FMN (prFMN) to catalyze decarboxylation reactions on aromatic rings and C-C double bonds. Although a growing number of prFMN-dependent enzymes have been identified, the mechanism of the reaction remains poorly understood. Here, we present a detailed pre-steady-state kinetic analysis of the FDC-catalyzed reaction of prFMN with both styrene and phenylacrylic acid. Based on the pattern of reactivity observed, we propose a "two-stroke" kinetic model in which negative cooperativity between the two subunits of the FDC homodimer plays an important and previously unrecognized role in catalysis. In this model, catalysis is initiated at the high-affinity active site, which reacts with phenylacrylate to yield, after decarboxylation, the covalently bound styrene-prFMN cycloadduct. In the second stage of the catalytic cycle, binding of the second substrate molecule to the low-affinity active site drives a conformational switch that interconverts the high-affinity and low-affinity active sites. This switching of affinity couples the energetically unfavorable cycloelimination of styrene from the first site with the energetically favorable cycloaddition and decarboxylation of phenylacrylate at the second site. We note as a caveat that, at this point, the complexity of the FDC kinetics leaves open other mechanistic interpretations and that further experiments will be needed to more firmly establish or refute our proposal.


Asunto(s)
Carboxiliasas , Descarboxilación , Cinética , Dominio Catalítico , Carboxiliasas/química , Compuestos Orgánicos , Flavinas/metabolismo
19.
Protein J ; 42(1): 1-13, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36527585

RESUMEN

Ginkgo seed is an important Chinese medicine and food resource in China, but the toxicity of ginkgo acid in it limits its application. Previous studies have found that salicylic acid decarboxylase (Sdc) has a decarboxylation degradation effect on ginkgo acid. In order to improve the decarboxylation ability of Sdc to Ginkgo acid, 11 residues of the Sdc around the substrate (salicylic acid) were determined as mutation targets according to the analysis of crystal structure of Sdc (PDB ID:6JQX), from Trichosporon moniliiforme WU-0401, and a total of 30 single point mutant enzymes and one compound mutant enzyme were obtained. With Ginkgo acid C15:1 as the substrate, it was found from activity assay that Sdc-Y64T and Sdc-P191A had higher decarboxylation activity, which increased by 105.18% and 116.74% compared with that of wild type Sdc, respectively. The optimal pH for Sdc Y64T and Sdc-P191A to decarboxylate Ginkgo acid C15:1 was 5.5, which is the same as the wild type Sdc. The optimal temperature of Sdc-P191A was 50 °C, which was consistent with that of the wild type Sdc, but the optimal temperature of the mutant Sdc-Y64T was 40 °C, which was 10 °C lower than that of wild type Sdc.


Asunto(s)
Carboxiliasas , Ginkgo biloba , Ginkgo biloba/metabolismo , Descarboxilación , Ácido Salicílico/metabolismo , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Mutación
20.
Biochim Biophys Acta Gen Subj ; 1866(12): 130247, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162732

RESUMEN

BACKGROUND: Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. METHODS: Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. RESULTS: Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. CONCLUSIONS: The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. SIGNIFICANCE: Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.


Asunto(s)
Carboxiliasas , Mononucleótido de Flavina , Dominio Catalítico , Carboxiliasas/química , Carboxiliasas/metabolismo , Prenilación , Protones , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA