Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611765

RESUMEN

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Asunto(s)
Carica , Carica/genética , Antocianinas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Espectrometría de Masas en Tándem , Metaboloma , Verduras
2.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632280

RESUMEN

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Asunto(s)
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteómica , Procesos de Determinación del Sexo , Flores/genética , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474290

RESUMEN

Commercial papaya varieties grown in Australia vary greatly in taste and aroma. Previous profiling has identified undesirable 'off tastes' in existing varieties, discouraging a portion of the population from consuming papayas. Our focus on enhancing preferred flavours led to an exploration of the genetic mechanisms and biosynthesis pathways that underlie these desired taste profiles. To identify genes associated with consumer-preferred flavours, we conducted whole RNA sequencing and de novo genome assembly on papaya varieties RB1 (known for its sweet flavour and floral aroma) and 1B (less favoured due to its bitter taste and musty aroma) at both ripe and unripe stages. In total, 180,368 transcripts were generated, and 118 transcripts related to flavours were differentially expressed between the two varieties at the ripe stage. Five genes (cpBGH3B, cpPFP, cpSUS, cpGES and cpLIS) were validated through qPCR and significantly differentially expressed. These genes are suggested to play key roles in sucrose metabolism and aromatic compound production pathways, holding promise for future selective breeding strategies. Further exploration will involve assessing their potential across broader germplasm and various growth environments.


Asunto(s)
Carica , Gusto , Carica/genética , Australia , Percepción del Gusto , Aromatizantes
4.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319003

RESUMEN

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Asunto(s)
Ácido Abscísico , Calcio , Carica , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Carica/metabolismo , Carica/genética , Carica/crecimiento & desarrollo , Calcio/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calmodulina/metabolismo , Calmodulina/genética , Reguladores del Crecimiento de las Plantas/metabolismo
5.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417796

RESUMEN

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Asunto(s)
Carica , Glutatión Transferasa , Tiram , Carica/enzimología , Carica/genética , Fungicidas Industriales/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139107

RESUMEN

Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.


Asunto(s)
Acuaporinas , Carica , Humanos , Carica/genética , Genoma de Planta , Filogenia , Proteínas de Plantas/metabolismo , Verduras/metabolismo , Acuaporinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
7.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762345

RESUMEN

MIKC-type MADS-box genes, also known as type II genes, play a crucial role in regulating the formation of floral organs and reproductive development in plants. However, the genome-wide identification and characterization of type II genes as well as a transcriptomic survey of their potential roles in Carica papaya remain unresolved. Here, we identified and characterized 24 type II genes in the C. papaya genome, and investigated their evolutional scenario and potential roles with a widespread expression profile. The type II genes were divided into thirteen subclades, and gene loss events likely occurred in papaya, as evidenced by the contracted member size of most subclades. Gene duplication mainly contributed to MIKC-type gene formation in papaya, and the duplicated gene pairs displayed prevalent expression divergence, implying the evolutionary significance of gene duplication in shaping the diversity of type II genes in papaya. A large-scale transcriptome analysis of 152 samples indicated that different subclasses of these genes showed distinct expression patterns in various tissues, biotic stress response, and abiotic stress response, reflecting their divergent functions. The hub-network of male and female flowers and qRT-PCR suggested that TT16-3 and AGL8 participated in male flower development and seed germination. Overall, this study provides valuable insights into the evolution and functions of MIKC-type genes in C. papaya.


Asunto(s)
Carica , Transcriptoma , Carica/genética , Perfilación de la Expresión Génica , Genómica , Flores/genética
8.
Sci Rep ; 13(1): 13431, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596489

RESUMEN

Despite the relevance of the global scenario regarding the papaya (Carica papaya L.) trade, there is still a limited number of papaya cultivars with different fruit patterns. Therefore, it is essential to explore the genetic variability at all levels of the germplasm used in the development of new papaya cultivars to meet its marketing goal. Thus, this study measured and explored the potential of genetic variability based on related to fruit quality traits, of a population of papaya lines in the F5 generation through several statistical analyzes. For this, 97 inbred lines obtained using the Single Seed Descent method, resulting from a cross between the JS-12 and Sekati genotypes, both with Formosa fruit pattern, were evaluated. Results indicated there was genetic variability in the fruit quality. The traits that most contributed to the variability were related to the fruit shape. The diverse population of 97 inbred papaya lines in the F5 generation showed promise for producing commercial-sized fruits in Formosa, Intermediate, and Solo patterns. Additionally, the selection of inbred papaya lines based on fruit shape using morpho-anatomical traits does not compromise physical and chemical parameters related to fruit quality.


Asunto(s)
Carica , Frutas , Frutas/genética , Carica/genética , Semillas , Citoplasma , Verduras , Variación Genética
9.
Plant Sci ; 335: 111814, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562730

RESUMEN

Papaya (Carica papaya L.) is an economically significant plant that produces fruit consumed worldwide due to its organoleptic characteristics. Since their commercial production, papaya fruits have faced several problems, such as pests, which have been partly resolved using transgenic varieties. Nevertheless, a principal challenge in this cultivation is the plant's sex determination. The sex issue in papaya is complex because papaya flowers can bear three sex forms: male, female, and hermaphrodite, which affects their fruit production, shape, and yield. Fruits from hermaphrodite plants are preferred more by consumers than female ones, and male plants rarely produce fruits without commercial value. Chromosomes are responsible for sex determination in papaya, denoted as XY for male, XX for female, and XYh for hermaphrodite. However, genes related to sex have been reported but are not conclusive. Factors such as the environment, hormones, and genetic and epigenetic background can also affect sex expression. Therefore, in this review, we will discuss recent research on the sex of papaya, from reported genes to date, their biology, and sexing approaches using molecular markers and their advantages.


Asunto(s)
Carica , Carica/genética , Verduras
10.
Biol Pharm Bull ; 46(5): 713-717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121697

RESUMEN

A loop-mediated isothermal amplification (LAMP)-mediated screening detection method for genetically modified (GM) papaya was developed targeting the 35S promoter (P35S) of the cauliflower mosaic virus. LAMP products were detected using a Genie II real-time fluorometer. The limit of detection (LOD) was evaluated and found to be ≤0.05% for papaya seeds. We also designed a primer set for the detection of the papaya endogenous reference sequence, chymopapain, and the species-specificity was confirmed. To improve cost-effectiveness, single-stranded tag hybridization (STH) on a chromatography printed-array strip (C-PAS) system, which is a lateral flow DNA chromatography technology, was applied. LAMP amplification was clearly detected by the system at the LOD level, and a duplex detection of P35S and chymopapain was successfully applied. This simple and quick method for the screening of GM papaya will be useful for the prevention of environmental contamination of unauthorized GM crops.


Asunto(s)
Carica , Quimopapaína , Carica/genética , Plantas Modificadas Genéticamente/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Verduras , Sensibilidad y Especificidad
11.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 614-624, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847093

RESUMEN

Papaya, which is mainly cultivated in the southeastern region of China, is one of the four famous fruits in Lingnan. It is favored by people because of its edible and medicinal value. Fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase (F2KP) is a unique bifunctional enzyme with a kinase domain and an esterase domain that catalyzes the synthesis and degradation of fructose-2, 6-bisphosphate (Fru-2, 6-P2), an important regulator of glucose metabolism in organisms. In order to study the function of the gene CpF2KP encoding the enzyme in papaya, it is particularly important to obtain the target protein. In this study, the coding sequence (CDS) of CpF2KP, with a full-length of 2 274 bp, was got from the papaya genome. The amplified sequence of full-length CDS was cloned into the vector PGEX-4T-1 which was double digested with EcoR I and BamH I. The amplified sequence was constructed into a prokaryotic expression vector by genetic recombination. After exploring the induction conditions, the results of SDS-PAGE showed that the size of the recombinant GST-CpF2KP protein was about 110 kDa. The optimum IPTG concentration and temperature for CpF2KP induction were 0.5 mmol/L and 28 ℃, respectively. The purified sin[A1] gle target protein was obtained after purifying the induced CpF2KP protein. In addition, the expression level of this gene was detected in different tissues, and showed that the gene was expressed at the highest level in seeds and the lowest in pulp. This study provides an important basis for further revealing the function of CpF2KP protein and studying the involved biological processes of this gene in papaya.


Asunto(s)
Carica , Humanos , Carica/genética , Proteínas Recombinantes , Metabolismo de los Hidratos de Carbono , Clonación Molecular , China
12.
Pak J Biol Sci ; 25(6): 468-475, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36098181

RESUMEN

<b>Background and Objective:</b> In high plants, the 70 kDa heat stress proteins (Hsp70-s) have been regarded as one of the vital components of the cellular network of chaperones and folding catalysts that play important roles in numerous biological processes during growth and development. The Hsp70 families have been reported in many plant species, unfortunately, no information on this important protein family in papaya (<i>Carica papaya</i>). The objective of this study was to provide comprehensive information on the CpHsp70 family in papaya. <b>Materials and Methods:</b> The <i>CpHsp70</i> genes in the papaya genome were identified by a basic local alignment search tool against the papaya genome database by using well-known <i>Arabidopsis</i> Hsp70-s. Sequences were then analyzed by various bioinformatics tools to investigate the characteristics of the CpHsp70 family. <b>Results:</b> A total of 12 members of the CpHsp70 family has been identified and characterized in papaya. By using various computational tools, these results revealed that all general characteristics of the CpHsp70 family, like physic-chemical parameters, gene structure, phylogenetic tree and subcellular localization were provided. The transcriptome atlas was applied to re-analyze the expression patterns of genes encoding the CpHsp70 family in major tissues/organs during the growth and development of papaya plants. <b>Conclusion:</b> Results from this work exhibited the characteristics and expression analysis of the <i>CpHsp70</i> genes of this important tropical fruit crop. Taken together, this study could provide a solid foundation of the CpHsp70 family, which will be helpful in the construction of stress tolerance in papaya plants.


Asunto(s)
Arabidopsis , Carica , Arabidopsis/genética , Carica/genética , Genoma de Planta , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Filogenia , Verduras/genética
13.
Front Cell Infect Microbiol ; 12: 958741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159651

RESUMEN

Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.


Asunto(s)
Carica , Haemonchus , Animales , Antiparasitarios/farmacología , Carica/genética , Línea Celular , Ecosistema , Haemonchus/genética , Humanos , Plantas Modificadas Genéticamente
14.
Methods Mol Biol ; 2527: 143-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951190

RESUMEN

High mortality rates of in vitro plants during ex vitro acclimatization, due to low rooting, is one of the main problems of papaya tissue culture. This work was carried out with the objective to obtain 100% hermaphroditic in vitro plants of the papaya cultivar "Maradol Roja" by somatic embryogenesis, which have an adequate rooting system that allows them a higher survival percentage in the ex vitro acclimatization phase. In international scientific literature, there are several protocols; however, not all of them cover the different phases of somatic embryogenesis. This chapter describes a complete and optimized protocol from immature zygotic embryos in this cultivar. It also looks at the morpho-anatomical characterization of somatic embryos in the different stages of ontogenetic development, as well as high survival rates under ex vitro conditions of the plants obtained. It can be used for genetic improvement and propagation of this species.


Asunto(s)
Carica , Aclimatación , Carica/genética , Desarrollo Embrionario/genética , Técnicas de Embriogénesis Somática de Plantas/métodos , Cigoto
15.
Plant Reprod ; 35(4): 233-264, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35920937

RESUMEN

KEY MESSAGE: Differential spatial and temporal expression patterns due to regulatory cis-elements and two different isoforms are detected among CpMDAR4 alleles in papaya. The aim of this research was to study the effects of cis-element differences between the X, Y and Yh alleles on the expression of CpMDAR4, a potential candidate gene for sex differentiation in papaya, using a transcriptional reporter system in a model species Arabidopsis thaliana. Possible effects of a retrotransposon insertion in the Y and Yh alleles on the transcription and expression of CpMDAR4 alleles in papaya flowers were also examined. When comparing promoters and cis-regulatory elements among genes in the non-recombining region of the sex chromosomes, paired genes exhibited differences. Our results showed that differences in the promoter sequences of the CpMDAR4 alleles drove the expression of a reporter gene to different flower tissues in Arabidopsis. ß-glucuronidase staining analysis of T2 and T3 lines for constructs containing 5' deletions of native Y and Yh allele promoters showed the loss of specific expression of the reporter gene in the anthers, confirming the existence and location of cis-regulatory element POLLEN1LELAT52. The expression analysis of CpMDAR4 alleles in papaya flowers also showed that all alleles are actively expressed in different flower tissues, with the existence of a shorter truncated isoform, with unknown function, for the Y and Yh alleles due to an LTR-RT insertion in the Y and Yh chromosomes. The observed expression patterns in Arabidopsis thaliana flowers and the expression patterns of CpMDAR4 alleles in papaya flowers suggest that MDAR4 might have a role on development of reproductive organs in papaya, and that it constitutes an important candidate for sex differentiation.


Asunto(s)
Arabidopsis , Carica , Carica/genética , Carica/metabolismo , Cromosomas de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Regiones Promotoras Genéticas , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
16.
J Agric Food Chem ; 70(32): 9919-9930, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921197

RESUMEN

Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses attributable to ethylene-induced ripening and softening. In this study, we examined the effect of 1-methylcyclopropene (1-MCP) treatment (1 µL L-1 for 20 h) on the textural properties of "SunUp" papaya fruit and investigated the regulatory mechanisms of molecular profiles. Compared with control, postharvest 1-MCP treatment significantly inhibited fruit softening, which is associated with higher hemicellulose content and lower xylanase activity of papaya fruit. Moreover, RNA-seq and qRT-PCR analyses indicated that CpbHLH3 and CpXYN1 were differentially expressed during storage. Yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter assays disclosed that CpbHLH3 activated the transcription of CpXYN1 by binding directly to its promoter. Transient overexpression of CpbHLH3 alleviates the inhibitory effect of 1-MCP on softening by increasing xylanase activity and upregulating the gene expression. Our observations provide new insights into the transcriptional regulatory mechanisms that govern softening of postharvest papaya fruit.


Asunto(s)
Carica , Carica/genética , Carica/metabolismo , Ciclopropanos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Verduras/metabolismo
17.
Plant Mol Biol ; 110(1-2): 107-130, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35725838

RESUMEN

KEY MESSAGE: The interaction between exogenous IBA with sucrose, light and ventilation, alters the expression of ARFs and Aux/IAA genes in in vitro grown Carica papaya plantlets. In vitro papaya plantlets normally show low rooting percentages during their ex vitro establishment that eventually leads to high mortality when transferred to field conditions. Indole-3-butyric acid (IBA) auxin is normally added to culture medium, to achieve adventitious root formation on in vitro papaya plantlets. However, the molecular mechanisms occurring when IBA is added to the medium under varying external conditions of sugar, light and ventilation have not been studied. Auxin response factors (ARF) are auxin-transcription activators, while auxin/indole-3-acetic acid (Aux/IAA) are auxin-transcription repressors, that modulate key components involved in auxin signaling in plants. In the present study, we identified 12 CpARF and 18 CpAux/IAA sequences in the papaya genome. The cis-acting regulatory elements associated to those CpARFs and CpAux/IAA gene families were associated with stress and hormone responses. Furthermore, a comprehensive characterization and expression profiling analysis was performed on 6 genes involved in rhizogenesis formation (CpARF5, 6, 7 and CpAux/IAA11, 13, 14) from in vitro papaya plantlets exposed to different rhizogenesis-inducing treatments. In general, intact in vitro plantlets were not able to produce adventitious roots, when IBA (2 mg L-1) was added to the culture medium; they became capable to produce roots and increased their ex-vitro survival. However, the best rooting and survival % were obtained when IBA was added in combination with adequate sucrose supply (20 g L-1), increased light intensity (750 µmol photon m-2 s-1) and ventilation systems within the culture vessel. Interestingly, it was precisely under those conditions that promoted high rooting and survival %, where the highest expression of CpARFs, but the lowest expression of CpAux/IAAs occurred. One interesting case occurred when in vitro plantlets were exposed to high levels of light in the absence of added IBA, as high rooting and survival occurred, even though no exogenous auxin was added. In fact, plantlets from this treatment showed the right expression profile between auxin activators/repressors genes, in both stem base and root tissues.


Asunto(s)
Carica , Carica/genética , Carica/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Indoles/metabolismo , Indoles/farmacología , Sacarosa/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35682992

RESUMEN

Inconsistency in flavour is one of the major challenges to the Australian papaya industry. However, objectively measurable standards of the compound profiles that provide preferable taste and aroma, together with consumer acceptability, have not been set. In this study, three red-flesh papayas (i.e., 'RB1', 'RB4', and 'Skybury') and two yellow-flesh papayas (i.e., '1B' and 'H13') were presented to a trained sensory panel and a consumer panel to assess sensory profiles and liking. The papaya samples were also examined for sugar components, total soluble solids, and 14 selected volatile compounds. Additionally, the expression patterns of 10 genes related to sweetness and volatile metabolism were assessed. In general, red papaya varieties had higher sugar content and tasted sweeter than yellow varieties, while yellow varieties had higher concentrations of citrus floral aroma volatiles and higher aroma intensity. Higher concentrations of glucose, linalool oxide, and terpinolene were significantly associated with decreased consumer liking. Significant differences were observed in the expression profiles of all the genes assessed among the selected papaya varieties. Of these, cpGPT2 and cpBGLU31 were positively correlated to glucose production and were expressed significantly higher in '1B' than in 'RB1' or 'Skybury'. These findings will assist in the strategic selective breeding for papaya to better match consumer and, hence, market demand.


Asunto(s)
Carica , Australia , Carbohidratos/análisis , Carica/química , Carica/genética , Aromatizantes/metabolismo , Frutas/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo , Gusto , Verduras
20.
Nat Genet ; 54(5): 715-724, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551309

RESUMEN

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.


Asunto(s)
Carica , Carica/genética , Cromosomas de las Plantas/genética , Domesticación , Fitomejoramiento , Cromosomas Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA