Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2408459121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298480

RESUMEN

We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell-cell adhesion cadherin-catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, ß-catenin, and vinculin residing in the cadherin-catenin-vinculin complex become activated, involving nanoscale motions in this complex. The cadherin-catenin complex is the central component of the cell-cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin-catenin-vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way "motorman" entropic spring model for the dynamic cadherin-catenin-vinculin complex, which allows the complex to function as a flexible and elastic force transducer.


Asunto(s)
Cadherinas , Vinculina , Vinculina/metabolismo , Vinculina/química , Cadherinas/metabolismo , Cadherinas/química , alfa Catenina/metabolismo , alfa Catenina/química , Humanos , beta Catenina/metabolismo , beta Catenina/química , Unión Proteica , Uniones Adherentes/metabolismo , Neutrones , Simulación de Dinámica Molecular , Análisis Espectral/métodos , Animales , Cateninas/metabolismo , Adhesión Celular/fisiología
2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697304

RESUMEN

Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.


Asunto(s)
Cadherinas , Cateninas , Proliferación Celular , Catenina delta , Progresión de la Enfermedad , Lipoilación , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Cateninas/metabolismo , Cateninas/genética , Línea Celular Tumoral , Cadherinas/metabolismo , Cadherinas/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Transducción de Señal , Animales , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
3.
Gastric Cancer ; 27(4): 747-759, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796558

RESUMEN

BACKGROUND: CDH1 and CTNNA1 remain as the main genes for hereditary gastric cancer. However, they only explain a small fraction of gastric cancer cases with suspected inherited basis. In this study, we aimed to identify new hereditary genes for early-onset gastric cancer patients (EOGC; < 50 years old). METHODS: After germline exome sequencing in 20 EOGC patients and replication of relevant findings by gene-panel sequencing in an independent cohort of 152 patients, CTNND1 stood out as an interesting candidate gene, since its protein product (p120ctn) directly interacts with E-cadherin. We proceeded with functional characterization by generating two knockout CTNND1 cellular models by gene editing and introducing the detected genetic variants using a lentiviral delivery system. We assessed ß-catenin and E-cadherin levels, cell detachment, as well as E-cadherin localization and cell-to-cell interaction by spheroid modeling. RESULTS: Three CTNND1 germline variants [c.28_29delinsCT, p.(Ala10Leu); c.1105C > T, p.(Pro369Ser); c.1537A > G, p.(Asn513Asp)] were identified in our EOGC cohorts. Cells encoding CTNND1 variants displayed altered E-cadherin levels and intercellular interactions. In addition, the p.(Pro369Ser) variant, located in a key region in the E-cadherin/p120ctn binding domain, showed E-cadherin mislocalization. CONCLUSIONS: Defects in CTNND1 could be involved in germline predisposition to gastric cancer by altering E-cadherin and, consequently, cell-to-cell interactions. In the present study, CTNND1 germline variants explained 2% (3/172) of the cases, although further studies in larger external cohorts are needed.


Asunto(s)
Cadherinas , Cateninas , Catenina delta , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Masculino , Cateninas/genética , Cateninas/metabolismo , Femenino , Persona de Mediana Edad , Adulto , Cadherinas/genética , Comunicación Celular , Edad de Inicio , Antígenos CD
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 717-729, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38676398

RESUMEN

The epicardium is integral to cardiac development and facilitates endogenous heart regeneration and repair. While miR-194-3p is associated with cellular migration and invasion, its impact on epicardial cells remains uncharted. In this work we use gain-of-function and loss-of-function methodologies to investigate the function of miR-194-3p in cardiac development. We culture embryonic epicardial cells in vitro and subject them to transforming growth factor ß (TGF-ß) treatment to induce epithelial-mesenchymal transition (EMT) and monitor miR-194-3p expression. In addition, the effects of miR-194-3p mimics and inhibitors on epicardial cell development and changes in EMT are investigated. To validate the binding targets of miR-194-3p and its ability to recover the target gene-phenotype, we produce a mutant vector p120-catenin-3'UTR-MUT. In epicardial cells, TGF-ß-induced EMT results in a notable overexpression of miR-194-3p. The administration of miR-194-3p mimics promotes EMT, which is correlated with elevated levels of mesenchymal markers. Conversely, miR-194-3p inhibitor attenuates EMT. Further investigations reveal a negative correlation between miR-194-3p and p120-catenin, which influences ß-catenin level in the cell adhesion pathway. The suppression of EMT caused by the miR-194-3p inhibitor is balanced by silencing of p120-catenin. In conclusion, miR-194-3p directly targets p120-catenin and modulates its expression, which in turn alters ß-catenin expression, critically influencing the EMT process in the embryonic epicardial cells via the cell adhesion mechanism.


Asunto(s)
Cateninas , Transición Epitelial-Mesenquimal , MicroARNs , Pericardio , Transducción de Señal , beta Catenina , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , beta Catenina/metabolismo , beta Catenina/genética , Pericardio/metabolismo , Pericardio/citología , Pericardio/embriología , Ratones , Cateninas/metabolismo , Cateninas/genética , Catenina delta , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas
5.
J Cell Biol ; 223(5)2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38563860

RESUMEN

Force transmission at cell-cell junctions critically regulates embryogenesis, tissue homeostasis, and diseases including cancer. The cadherin-catenin linkage has been considered the keystone of junctional force transmission, but new findings challenge this paradigm, arguing instead that the nectin-afadin linkage plays the more important role in mature junctions in the intestinal epithelium.


Asunto(s)
Uniones Intercelulares , Proteínas de Microfilamentos , Nectinas , Cadherinas/metabolismo , Cateninas/metabolismo , Proteínas de Microfilamentos/metabolismo , Nectinas/metabolismo , Uniones Intercelulares/química , Humanos
6.
Clin Genet ; 106(2): 180-186, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38604781

RESUMEN

CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.


Asunto(s)
Catenina delta , Trastornos del Neurodesarrollo , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Alelos , Cateninas/genética , Consanguinidad , Homocigoto , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Eliminación de Secuencia/genética
7.
Neuropharmacology ; 253: 109963, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657945

RESUMEN

Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.


Asunto(s)
Animales Recién Nacidos , Efectos Tardíos de la Exposición Prenatal , Ácido Valproico , Vocalización Animal , Animales , Ácido Valproico/farmacología , Ácido Valproico/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Femenino , Vocalización Animal/efectos de los fármacos , Vocalización Animal/fisiología , Ratones , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Cateninas/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores AMPA/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/metabolismo
8.
Neuropharmacology ; 251: 109942, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570066

RESUMEN

Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/ß-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/ß-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/ß-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/inducido químicamente , beta Catenina/metabolismo , Enfermedades Neuroinflamatorias , Epilepsia/metabolismo , Neurogénesis , Cateninas/metabolismo , Hipocampo/metabolismo
9.
Hepatol Commun ; 8(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497929

RESUMEN

BACKGROUND: Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS: In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS: We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS: Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.


Asunto(s)
Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Animales , Ratones , Timidina Quinasa/genética , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cateninas , Mutación/genética
10.
Sci Adv ; 10(11): eadg9278, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478616

RESUMEN

Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/ß-catenin-S1P cross-talk. In the vascular system, both Wnt/ß-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of ß-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the ß-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the ß-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/ß-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.


Asunto(s)
Aterosclerosis , Cateninas , Lisofosfolípidos , Esfingosina/análogos & derivados , Humanos , Cateninas/metabolismo , beta Catenina/metabolismo , Remodelación Vascular , Transducción de Señal
11.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456551

RESUMEN

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Asunto(s)
Cadherinas , Nicho de Células Madre , Nicho de Células Madre/genética , Cadherinas/genética , Cadherinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Cateninas/genética , Cateninas/metabolismo , Músculo Esquelético/metabolismo , Adhesión Celular/genética
12.
Chem Biol Drug Des ; 103(3): e14501, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38453253

RESUMEN

The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and ß-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of ß-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/ß-catenin signaling.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Factor de Necrosis Tumoral alfa/metabolismo , beta Catenina/metabolismo , Cateninas/metabolismo , Cateninas/farmacología , Médula Ósea/metabolismo , Células Cultivadas , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo
13.
Dev Biol ; 511: 12-25, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38556137

RESUMEN

During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several genes encoding proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1, we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated parental nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator, and CCC-interacting protein, PAC-1/ARHGAP21 to cell contact sites, and we identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.


Asunto(s)
Cadherinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epidermis , Morfogénesis , Animales , Cadherinas/metabolismo , Cadherinas/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cateninas/metabolismo , Cateninas/genética , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Epidermis/embriología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética
14.
Zhonghua Bing Li Xue Za Zhi ; 53(3): 288-292, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38433058

RESUMEN

Objective: To investigate the clinicopathological features and molecular characteristics of ß-catenin-deficient colorectal cancer. Methods: The clinical, pathological and molecular features of 11 colorectal cancers with ß-catenin protein loss diagnosed at the 960th Hospital of People's Liberation Army of China, from January 2012 to November 2022 were analyzed. Results: Among the 11 patients, 3 were males and 8 were females. Their age ranged from 43 to 74 years, with the median age of 59 years. Six were in the left colon and 5 were in the right colon. One of the 11 cases had lymph node metastasis, 10 cases were well and moderately differentiated adenocarcinoma, and 1 was mucinous adenocarcinoma. Eight cases were of TNM stage T4, 2 of T1 stage and 1 of Tis stage. ß-catenin protein was not detected using immunohistochemistry. Sanger sequencing revealed the presence of fragment-deletion mutation in exon 3 of CTNNB1 gene, resulting in loss of ß-catenin protein expression. Conclusion: ß-catenin deficiency is present in a small number of colorectal cancers and may be associated with exon 3 mutations of CTNNB1 gene.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma/genética , beta Catenina/genética , Cateninas , Neoplasias Colorrectales/genética , Exones
15.
J Egypt Natl Canc Inst ; 36(1): 8, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494582

RESUMEN

BACKGROUND: CircRNAs and miRNAs are involved in the progression of tumor. CircMCTP2 is considered as a novel tumor promoter. However, the exact functions of circMCTP2 in bladder cancer are still unclear. This study was designed to explore the underlying mechanisms of circMCTP2-modulated tumor development in bladder cancer. METHODS: The present study is an original research. The levels of circMCTP2 in a total of 39 bladder cancer specimens and cell lines were determined by RT-qPCR. The expression of FZD8 in T24 and RT-4 cells treated with miR-99a-5p mimics were examined using western blotting. In addition, the proliferative, migrative and invasive abilities of transfected cells were determined by CCK8 and Transwell assays. Furthermore, the apoptosis of transfected cells was evaluated using flow cytometry. Dual luciferase reporter assay was performed to elucidate the relationship between miR-99a-5p and circMCTP2/FZD8. RESULTS: The levels of circMCTP2 were elevated in bladder cancer samples and cells, and this was related to worse survival rate. Downregulation of circMCTP2 suppressed growth and metastasis of cells, whereas the apoptotic rate of cells was enhanced. The levels of miR-99a-5rp was elevated after the downregulation of circMCTP2. Moreover, reverse correlation between the expression of miR-99a-5p and circMCTP2 was revealed in bladder cancer specimens. Additionally, FZD8 was the putative target of miR-99a-5p and the mimics of miR-99a-5p inhibited the proliferation, migration and invasion of bladder cancer cells via the FZD8/Wnt-b-catenin axis. Moreover, circMCTP2 regulated the growth and metastasis of bladder cancer cells potentially through regulating the miR-99a-5p/FZD8/Wnt-b-catenin axis. In summary, circMCTP2 was considered as an oncogenic factor through regulating the miR-99a-5p/FZD8/Wnt-b-catenin axis. CONCLUSIONS: This novel signaling could regulate the biological behaviours of bladder cancer cells, and these findings highlighted circMCTP2 as a critical target for treating bladder cancer.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Cateninas/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(9): e2316722121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377188

RESUMEN

Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.


Asunto(s)
Actinas , Uniones Adherentes , Humanos , Uniones Adherentes/metabolismo , Actinas/metabolismo , Células CACO-2 , Cadherinas/genética , Cadherinas/metabolismo , Uniones Intercelulares/metabolismo , Uniones Estrechas/metabolismo , Cateninas/metabolismo , Células Epiteliales/metabolismo
17.
J Cell Mol Med ; 28(4): e18133, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332509

RESUMEN

The study aimed to investigate the regulatory mechanism of intracellular tension signaling in endplate chondrocytes and its impact on extracellular matrix synthesis. Human endplate chondrocytes were subjected to tension load using Flexcell FX-5000™, and changes in phenotype, morphology, and the expression of Hippo signaling pathway and α-Catenin were assessed through various techniques. Through the overexpression of YAP and inhibition of α-Catenin, the study clarified the intracellular tension signaling pathway and its regulation of extracellular matrix synthesis in endplate cartilage. In vitro-cultured human endplate chondrocytes significantly suppressed phenotype-related genes and proteins, accompanied by distinct changes in cytoskeleton morphology. Tension activation resulted in the substantial activation of the Hippo pathway, increased phosphorylation of YAP, and reduced nuclear translocation of YAP. YAP overexpression alleviated the inhibitory effect of tension on extracellular matrix synthesis in endplate chondrocytes. Tension also upregulated the expression of α-Catenin in endplate chondrocytes, which was attenuated by inhibiting α-Catenin expression, thereby reducing the impact of tension on cytoskeletal morphology and YAP nuclear translocation. Taken together, the α-Catenin/actin skeleton/Hippo-coupled network is a crucial signaling pathway for tension signaling in endplate chondrocytes, providing potential therapeutic targets for the treatment of endplate cartilage degeneration.


Asunto(s)
Condrocitos , Vía de Señalización Hippo , Humanos , Condrocitos/metabolismo , Actinas/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo , Cateninas/metabolismo , Cartílago/metabolismo , Fenotipo , Esqueleto/metabolismo
18.
Brain Behav ; 14(1): e3351, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376050

RESUMEN

INTRODUCTION: Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS: The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of ß1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-ß), glycogen synthase kinase-3ß (GSK-3ß), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS: The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of ß1-catenin, IGF-1, PSD-95, and TGF-ß genes decreased, whereas NR2B and GSK-3ß expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3ß as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION: The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.


Asunto(s)
Demencia Vascular , Animales , Ratas , Cateninas/metabolismo , Cognición , Medios de Cultivo Condicionados/farmacología , Homólogo 4 de la Proteína Discs Large , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aprendizaje por Laberinto , Ratas Sprague-Dawley , Células Madre/metabolismo , Transmisión Sináptica , Factor de Crecimiento Transformador beta/metabolismo
19.
Mol Ther ; 32(4): 1125-1143, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311851

RESUMEN

The CTNNB1 gene, encoding ß-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained ß-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (ß-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/ß-catenin complexes in an open conformation upon sustained ß-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in ß-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and ß-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during ß-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cateninas/genética , Cateninas/metabolismo , Proliferación Celular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación hacia Arriba
20.
J Pediatr Surg ; 59(5): 832-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418278

RESUMEN

BACKGROUND: Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS: We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for ß-catenin. Clinical variables were obtained from autopsy reports. RESULTS: Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing ß-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION: There appear to be differences in the abundance and/or localization of ß-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-Control Study.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Humanos , Lactante , beta Catenina/genética , beta Catenina/metabolismo , Estudios de Casos y Controles , Cateninas/metabolismo , Modelos Animales de Enfermedad , Hernias Diafragmáticas Congénitas/patología , Pulmón/anomalías , Éteres Fenílicos/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA