Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 828
Filtrar
1.
Chemosphere ; 364: 143051, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39127191

RESUMEN

In this study, acid-modified activated carbon fibers (ACF-Ps) were synthesized by phosphorylation. Three different types of ACF-based adsorbents functionalized with PO43-, P2O74-, or P3O105- ions, namely, ACF-P1, ACF-P2, and ACF-P3, were prepared by phosphorylating ACF with trisodium phosphate (Na3PO4), sodium dihydrogen pyrophosphate (Na2H2P2O5), and sodium tripolyphosphate (Na5P3O10), respectively, and utilized as adsorbents to remove cesium ions (Cs+) from aqueous solutions. Among the tested adsorbents, ACF-P3 exhibited the highest Cs+ adsorption capacity of 37.59 mg g-1 at 25 °C and pH 7 which is higher than that of ACF (5.634 mg g-1), ACF-P1 (19.38 mg g-1), and ACF-P2 (30.12 mg g-1) under the same experimental conditions. More importantly, the Cs+ removal efficiencies of ACF-P3 (82.90%), ACF-P2 (66.2%), ACF-P1 (34.2%) were 29.3-, 23.4-, and 12.11-fold higher than that of un-treated ACF (2.83%). The results suggested that the phosphorylation with Na5P3O10 is highly suitable for Cs+ adsorption which effectively functionalizes ACF with a greater number of phosphate functional groups. Adsorption and kinetic data well-fitted the Langmuir isotherm and pseudo-second-order model, respectively, which indicated the monolayer adsorption of Cs+ onto ACF-P1, ACF-P2, and ACF-P3 which were largely controlled by chemisorption. Overall, phosphoric acids containing different phosphate-based polyanions (PO43-, P2O74-, or P3O105-) enriched -OH and/or -COOH surface functional groups of ACF in addition to P-containing surface groups (PO, C-P-O, C-O-P, and P-O) and facilitated the Cs+ adsorption through surface complexation and electrostatic interactions.


Asunto(s)
Cesio , Ácidos Fosfóricos , Contaminantes Químicos del Agua , Ácidos Fosfóricos/química , Adsorción , Cesio/química , Contaminantes Químicos del Agua/química , Fibra de Carbono/química , Carbón Orgánico/química , Cinética , Iones/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
2.
Viruses ; 16(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39205208

RESUMEN

Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.


Asunto(s)
Dependovirus , Ultracentrifugación , Virión , Dependovirus/genética , Dependovirus/aislamiento & purificación , Humanos , Virión/aislamiento & purificación , Virión/genética , Vectores Genéticos/genética , Células HEK293 , Cesio/química , Centrifugación por Gradiente de Densidad/métodos , Transducción Genética , Cloruros
3.
Chemosphere ; 363: 142870, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019175

RESUMEN

Retention or trapping of cesium, one of the radiologically important fission products, in the nuclear reactor becomes a great concern as the occurrence may affect radioactivity in the long term or its environmental fate. Herein the chemical compound of cesium that had been largely trapped on the nuclear reactor structural material of (calcium silicate) thermal insulator in a simulated nuclear accident condition was investigated. A combined pre- and post-water dissolution analysis through infrared (IR) spectroscopy and optical emission spectroscopy (OES) was explored to resolve the characterization difficulty encountered in conventional X-ray diffraction analysis reported in the previous works. This method allowed us to identify for the first time the related large amount of water-soluble cesium in the calcium silicate material after a high-temperature chemical reaction as cesium metasilicate (Cs2SiO3). It was evidenced by similar vibrational characteristics of the material to that in the synthesized Cs2SiO3 as well as based on the dissolved Cs and Si in the leaching water having a molar ratio of 2.16 ± 0.33. The corresponding 79-98% of the retained cesium in calcium silicate materials in the case study of 700 and 800 °C reactions was of this compound, emphasizing its significance once formed. Thermodynamic considerations further corroborated the higher stability of Cs2SiO3 in the cesium-calcium silicate reaction than other cesium silicates such as Cs2Si4O9, Cs2Si2O5, or Cs6Si2O7. This clearly poses a high environmental risk due to the volatility of cesium metasilicate as it may spread out further through the water leak path from a damaged nuclear reactor.


Asunto(s)
Compuestos de Calcio , Cesio , Silicatos , Silicatos/química , Compuestos de Calcio/química , Cesio/química , Cesio/análisis , Difracción de Rayos X , Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/química , Liberación de Radiactividad Peligrosa
4.
J Environ Sci (China) ; 146: 39-54, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969461

RESUMEN

To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.


Asunto(s)
Cesio , Ferrocianuros , Nanofibras , Nanopartículas , Contaminantes Químicos del Agua , Purificación del Agua , Ferrocianuros/química , Nanofibras/química , Contaminantes Químicos del Agua/química , Cesio/química , Adsorción , Purificación del Agua/métodos , Nanopartículas/química , Dióxido de Silicio/química , Cinética , Propilaminas/química , Silanos
5.
ACS Appl Mater Interfaces ; 16(32): 42772-42782, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083762

RESUMEN

Rapidly and sensitively evaluating the acid value (AV) of edible oils is significant to ensuring food quality and safety. Cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) are an effective candidate for AV detection; however, their instability restricts wide applications. Herein, CsPbBr3@ZIF-8 was prepared by confining and growing CsPbBr3 NCs in situ into zeolitic imidazolate framework-8 (ZIF-8) to improve the stability, and a fluorescence sensor was established to evaluate the AV of edible oils. The results present that CsPbBr3 NCs (below 5 nm) with excellent optical properties were confined and grown in situ in micropores and mesopores of ZIF-8. Meanwhile, CsPbBr3@ZIF-8 had better long-term storage, ultraviolet-irradiation, and water-exposure stabilities, compared with CsPbBr3 NCs. Given the fact that free fatty acids (the major contributor of AV) decrease the fluorescence of CsPbBr3 NCs, the fluorescence intensities of CsPbBr3@ZIF-8 were negative-linearly related to oil AV (R2 = 0.9902) in 0.04-6.00 mg of KOH/g with a 0.06 mg of KOH/g limit of detection. Besides, the practical AV recovery was 92-101% with an average relative standard deviation of 2%. Furthermore, the detection time was 20 min. The response mechanism revealed that free fatty acids could remove surface ligands and increase surface defects to prompt the aggregation of CsPbBr3 NCs and the formation of lattice fringe dislocations, inducing a decrease in the fluorescence. Thus, a stable, sensitive, reliable sensor was established to evaluate the AV of edible oils.


Asunto(s)
Titanio , Zeolitas , Zeolitas/química , Titanio/química , Nanopartículas/química , Cesio/química , Plomo/análisis , Plomo/química , Aceites de Plantas/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Óxidos/química , Bromuros/química , Compuestos de Calcio/química , Estructuras Metalorgánicas/química , Imidazoles
6.
Chemistry ; 30(44): e202400177, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38644348

RESUMEN

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.


Asunto(s)
Carbonatos , Cesio , Oligopéptidos , Cesio/química , Carbonatos/química , Oligopéptidos/química , Espectroscopía de Resonancia Magnética , Solventes/química
7.
J Environ Sci (China) ; 143: 126-137, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644011

RESUMEN

Radioisotope leaking from nuclear waste has become an intractable problem due to its gamma radiation and strong water solubility. In this work, a novel porous ZnFC-PA/PSF composite sphere was fabricated by immobilization of ferrocyanides modified zinc phytate into polysulfone (PSF) substrate for the treatment of Cs-contaminated water. The maximum adsorption capacity of ZnFC-PA/PSF was 305.38 mg/g, and the removal efficiency of Cs+ was reached 94.27% within 2 hr. The ZnFC-PA/PSF presented favorable stability with negligible dissolution loss of Zn2+ and Fe2+ (< 2%). The ZnFC-PA/PSF achieved high-selectivity towards Cs+ (Kd = 2.24×104 mL/g) even in actual geothermal water. The adsorption mechanism was inferred to be the ion-exchange between Cs+ and K+. What's more, ZnFC-PA/PSF worked well in the fixed-bed adsorption (E = 91.92%), indicating the application potential for the hazardous Cs+ removal from wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Sulfonas/química , Polímeros/química , Porosidad , Cesio/química , Eliminación de Residuos Líquidos/métodos , Zinc/química , Aguas Residuales/química
8.
Chemosphere ; 353: 141570, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447900

RESUMEN

Selective adsorption is the most suitable technique for eliminating trace amounts of 137Cs from various volumes of 137Cs-contaminated water, including seawater. Although various metal ferrocyanide (MFC)-functionalized magnetic adsorbents have been developed for the selective removal of 137Cs and magnetic recovery of adsorbents, their adsorption capacity for Cs remains low. Here, magnetic hierarchical titanium ferrocyanide (mh-TiFC) was synthesized for the first time for enhanced Cs adsorption. Hierarchical TiFC, comprising 2-dimensional TiFC flakes, was synthesized on SiO2-coated magnetic Fe3O4 particles using a sacrificial TiO2 shell as a source of Ti4+ via a reaction with ferrocyanide under acidic conditions. The resultant mh-TiFC exhibited the highest maximum adsorption capacity (434.8 mg g-1) and enhanced Cs selectivity with an excellent Kd value (6,850,000 mL g-1) compared to those of previously reported magnetic Cs adsorbents. This enhancement was attributed to the hierarchical structure, which reduced intracrystalline diffusion and increased the surface area available for direct Cs adsorption. Additionally, mh-TiFC (0.1 g L-1) demonstrated an excellent removal efficiency of 137Cs exceeding 99.85% for groundwater and seawater containing approximately 22 ppt 137Cs. Therefore, mh-TiFC offers promising applications for the treatment of 137Cs-contaminated water.


Asunto(s)
Radioisótopos de Cesio , Cesio , Contaminantes Químicos del Agua , Cesio/química , Agua/química , Titanio , Ferrocianuros/química , Dióxido de Silicio/química , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472574

RESUMEN

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Asunto(s)
Bentonita , Cesio , Arcilla , Cesio/química , Adsorción , Cloruro de Sodio , Minerales/química , Cationes Monovalentes , Silicatos de Aluminio/química
10.
Chemosphere ; 353: 141510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401861

RESUMEN

Biotite, a phyllosilicate mineral, possesses significant potential for cesium (Cs) adsorption owing to its negative surface charge, specific surface area (SSA), and frayed edge sites (FES). Notably, FES are known to play an important role in the adsorption of Cs. The objectives of this study were to investigate the Cs adsorption capacity and behavior of artificially weathered biotite and identify mineralogical characteristics for the development of an eco-friendly geologically-based Cs adsorbent. Through various analyses, it was confirmed that the FES of biotite was mainly formed by mineral structural distortion during artificial weathering. The Cs adsorption capacity is improved by approximately 39% (from 20.53 to 28.63 mg g-1) when FES are formed in biotite through artificial weathering using a low-concentration acidic solution mixed with hydrogen peroxide (H2O2). Especially, the Cs selectivity in Cs-containing seawater, including high concentrations of cations and organic matter, was significantly enhanced from 203.2 to 1707.6 mL g-1, an increase in removal efficiency from 49.5 to 89.2%. These results indicate that FES of artificially weathered biotite play an essential role in Cs adsorption. Therefore, this simple and economical weathering method, which uses a low-concentration acidic solution mixed with H2O2, can be applied to natural minerals for use as Cs adsorbents.


Asunto(s)
Silicatos de Aluminio , Cesio , Peróxido de Hidrógeno , Cesio/química , Minerales/química , Compuestos Ferrosos/química , Adsorción
11.
Small ; 20(26): e2310238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267815

RESUMEN

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Asunto(s)
Cesio , Europio , Plomo , Luminiscencia , Nanopartículas , Dióxido de Silicio , Agua , Pez Cebra , Animales , Dióxido de Silicio/química , Europio/química , Nanopartículas/química , Plomo/química , Cesio/química , Agua/química , Titanio/química , Óxidos , Compuestos de Calcio
12.
Int J Biol Macromol ; 254(Pt 2): 126864, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37703986

RESUMEN

A magnetic micro porous structure composite based on alginate and Prussian blue (M-SA-PB) was simply prepared for cesium removal from the aqueous solutions. The gelation and formation of PB proceeded through the same step, which made the PB homogenously distributed and firmly attached to the alginate matrix. The homogenizer was applied to break down the bulky gel structure into micro-ones, and the lyophilizer will provide the porous structure. Batch cesium sorption experiments showed that the adsorption kinetics and isotherms were attributed to the pseudo-second-order model and Langmuir isotherm. Moreover, the Cs-ion is favorably adsorbed on the M-SA-PB composite surface as a monolayer towards Cs, with a maximum adsorption capacity reach of 191.0 mg/g. Furthermore, the M-SA-PB adsorbent showed excellent adsorption selectivity of Cs from multiple-ion solutions. Our work was extended to use the M-SA-PB composite in dynamic cesium sorption. The column studies showed that the removal efficiency of Cs+ increased with increasing bed depth as well as the initial cesium concentration. Finally, as previously mentioned, the M-SA-PB could be considered an excellent Cs+ scavenger employing both batch and dynamic approaches, which makes it a promising adsorbent for practical investigations.


Asunto(s)
Cesio , Contaminantes Químicos del Agua , Cesio/química , Hidrogeles , Adsorción , Alginatos/química , Cinética , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
13.
J Environ Radioact ; 272: 107350, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071796

RESUMEN

In this study, microstructural differences and changes in the adsorption capacity of cesium between cement and carbonated cement were investigated. Cement blocks were ground to powder for rapid carbonation, and microscopic variations were characterized by XRF, XRD, FT-IR, SEM, BET, and TGA. The characterization results show that the conversion of Ca(OH)2 and calcium silicate hydrate (C-S-H) gel to CaCO3 in cement after carbonation. And the component of Ca(OH)2 in the powder sample disappeared after three days of rapid carbonation. Batch experiments were used to investigate adsorption under the influence of time, initial cesium concentration, temperature, and ion coexistence. Pseudo-second-order kinetic and Langmuir isothermal model fitting could better describe the adsorption process and the results show that the maximum adsorption capacity of cement after carbonation surges from 29.6 µg‧g-1 to 1.58-5.89 mg‧g-1. (Different carbonating times lead to varying adsorption capacity.) The adsorption capacity decreases with increasing temperature. At temperatures of 293 K and 333 K, the calculated Gibbs free energy change values of cement with different carbonated degrees adsorbing cesium are -10.3 âˆ¼ -14.9 kJ‧mol-1 and -8.03 âˆ¼ -12.4 kJ‧mol-1. And the calculated values of enthalpy change and entropy change are -18.8 âˆ¼ -23.8 kJ‧mol-1 and -27.9 ∼ -37.1 J‧mol-1‧K-1. Combining the characterization and adsorption results, the huge increase in cesium adsorption capacity is closely related to the conversion of Ca(OH)2 to CaCO3, which will provide a new perspective on the adsorption mechanism of cesium in cement.


Asunto(s)
Monitoreo de Radiación , Contaminantes Químicos del Agua , Cesio/química , Polvos , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Carbonatos , Agua/química , Cinética , Concentración de Iones de Hidrógeno , Soluciones
14.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069346

RESUMEN

Conditioning of radioactive waste generated from the operation of medical institutions, nuclear cycle facilities, and nuclear facilities is important for the safety of the environment. One of the most hazardous radionuclides is radioactive cesium. There is a need for more effective solutions to contain radionuclides, especially cesium (Cs+). Geopolymers are promising inorganic materials that can provide a large active surface area with adjustable porosity and binding capacity. The existence of nanosized zeolite-like structures in aluminosilicate gels was shown earlier. These structures are candidates for immobilizing radioactive cesium (Cs+). However, the mechanisms of their interactions with the aluminosilicate framework related to radionuclide immobilization have not been well studied. In this work, the influence of alkaline cations (Na+ or K+) and the aluminosilicate framework structure on the binding capacity and mechanism of interaction of geopolymers with Cs+ is explored in the example of a sodalite framework. The local structure of the water molecules and alkaline ions in the equilibrium state and its behavior when the Si/Al ratio was changed were studied by DFT.


Asunto(s)
Silicatos de Aluminio , Cesio , Cesio/química , Cationes , Radioisótopos
15.
Environ Sci Pollut Res Int ; 30(60): 125526-125539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999846

RESUMEN

Prussian blue (PB) is widely used for the selective removal of radioactive cesium ions (Cs+) from aqueous solutions. Due to its small size and easy dispersion in water, PB requires a carrier that is both inexpensive and easily separable. Magnetic porous biochar (MPBC) was formed by activating starch with FeCl3 through a one-step calcination method. MPBC can be used as a carrier for Prussian blue, which is easily separated from the solution. This composite material (PB/MPBC) has a rich pore structure and maintains effective surface area, which can facilitate the penetration of Cs+ into the adsorbent. Besides, PB/MPBC exhibits high selectivity and good adsorption capacity achieving a large removal capacity of 101.43 mg/g. Thus, this study provides a novel approach for preparing composites with efficient removal of Cs+.


Asunto(s)
Cesio , Contaminantes Químicos del Agua , Cesio/química , Porosidad , Adsorción , Agua , Iones , Contaminantes Químicos del Agua/química , Fenómenos Magnéticos , Cinética
16.
Environ Sci Process Impacts ; 25(7): 1204-1212, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37317925

RESUMEN

In this study, we report chemical species of Cs and I in condensed vaporized particles (CVPs) produced by melting experiments using nuclear fuel components containing CsI with concrete. Analyses of CVPs by SEM with EDX showed the formation of many round particles containing Cs and I of diameters less than ∼20 µm. X-ray absorption near-edge-structure and SEM-EDX analyses showed two kinds of particles: one containing large amounts of Cs and I, suggesting the presence of CsI, and the other containing small amounts of Cs and I with large Si content. When CVSs were placed in contact with deionized water, most of the CsI from both particles was dissolved. In contrast, some fractions of Cs remained from the latter particles and possessed different chemical species from CsI. In addition, the remaining Cs was concomitantly present with Si, resembling chemical components in the highly radioactive cesium-rich microparticles (CsMPs) released by nuclear plant accidents into the surrounding environments. These results strongly suggest that Cs was incorporated in CVSs along with Si by melting nuclear fuel components to form sparingly-soluble CVMPs.


Asunto(s)
Cesio , Yodo , Cesio/química , Yodo/química , Volatilización , Plantas de Energía Nuclear , Liberación de Radiactividad Peligrosa
17.
Environ Sci Pollut Res Int ; 30(18): 53140-53156, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36853538

RESUMEN

Natural zeolite is organically modified with the surfactant cetyltrimethylammonium bromide (CTAB) and employed as a dual-function material for simultaneous adsorption of Cs+ cations and HCrO4- anions from aqueous solutions. Unmodified and modified zeolites are characterized by Fourier transform infrared (FTIR), dynamic light scattering (DLS), nitrogen adsorption-desorption isotherms, and X-ray diffraction (XRD). The results showed that CTAB-zeolite had the efficiency to simultaneously adsorb the concerned species in the pH range 2.5-4.2. The kinetic data showed that 90 and 300 min for Cs(I) and Cr(VI), respectively, were sufficient to attain equilibrium and the data are well-fitted by the double-exponential kinetic model. Of the studied adsorption isotherm models, Redlich-Peterson was the best one for describing the equilibrium adsorption isotherms. Values of ∆H°, ∆S°, and ∆G° for the present adsorption processes are estimated. CTAB-zeolite exhibited adsorption capacities of 0.713 and 1.216 mmol/g for Cs(I) and Cr(VI), respectively, which are comparable with the data reported in the literature. The adsorption mechanism of the concerned (radio)toxicants is proposed.


Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Cromatos , Tensoactivos/química , Zeolitas/química , Adsorción , Cetrimonio , Concentración de Iones de Hidrógeno , Aniones , Cinética , Cationes , Cesio/química , Contaminantes Químicos del Agua/análisis , Espectroscopía Infrarroja por Transformada de Fourier
18.
Phys Chem Chem Phys ; 25(3): 1799-1807, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597992

RESUMEN

Absorption of sufficiently energetic X-ray photons by a molecular system results in a cascade of ultrafast electronic relaxation processes which leads to a distortion and dissociation of its molecular structure. Here, we demonstrate that only decomposition of powdered cesium oxalate monohydrate induced by monochromatic X-ray irradiation under high pressure leads to the formation of cesium superoxide. Whereas, for an unhydrated form of cesium oxalate subjected to the same extreme conditions, only degradation of the electron density distribution is observed. Moreover, the corresponding model of X-ray induced electronic relaxation cascades with an emphasis on water molecules' critical role is proposed. Our experimental results suggest that the presence of water molecules in initially solid-state systems (i.e. additional electronic relaxation channels) together with applied high pressure (reduced interatomic/intermolecular distance) could potentially be a universal criteria for chemical and structural synthesis of novel compounds via X-ray induced photochemistry.


Asunto(s)
Cesio , Superóxidos , Rayos X , Cesio/química , Oxalatos , Agua
19.
Environ Res ; 221: 115309, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646200

RESUMEN

To date, radiocesium (137Cs) has been considered stable in the form of pollucite mineralized through high-temperature heat treatment. This study presented a possibility through experimental results that the entire medium exists as amorphous aluminosilicate at a relatively low temperature, but cesium is partially and preferentially converted from a composite adsorbent into pollucite. Cesium lowers the eutectic point within the system and initiates the nucleation of pollucite prior to other elements. We confirmed that the partial mineral phase of cesium showed the same chemical stability as when the entire medium was converted to pollucite. X-ray absorption spectroscopy provided direct evidence for this phenomenon; also, the stability results of radioactive cesium shown through a series of sintering experiments supported the conclusion. This method can be applied as a method to immobilize radioactive cesium under relatively mild temperature conditions of atmospheric pressure, while eliminating the problem of diffusion due to its volatilization.


Asunto(s)
Radioisótopos de Cesio , Cesio , Cesio/análisis , Cesio/química , Silicatos de Aluminio
20.
Environ Sci Pollut Res Int ; 30(13): 36807-36823, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36564688

RESUMEN

In this work, novel Prussian blue tetragonal nanorods were prepared by template-free solvothermal methods to remove radionuclide Cs and Sr. The as-prepared Prussian blue nanorods were identified and characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopic, thermogravimetric analysis, zeta potential, and surface analysis, and its sorption performance was tested by batch experiments. Our results suggest that Prussian blue nanorods exhibited better adsorption performance than co-precipitation PB or Prussian blue analogue composites. Thermodynamic analysis implied that the adsorption process was spontaneous and endothermic which was described well with the Langmuir isotherm and pseudo-second-order equation. The maximum adsorption capacity of PB nanorod was estimated to be 194.26 mg g-1 and 256.62 mg g-1 for Cs+ and Sr2+(adsorbate concentration at 500 mg L-1, the temperature at 298 k, pH at 7.0). Moreover, the experimental results showed that the Prussian blue nanorods have high crystallinity, few crystal defects, and good stability under alkaline conditions. The adsorption mechanism of Cs+ and Sr2+ was studied by X-ray photoelectron spectroscopy, X-ray diffraction, and 57Fe Mössbauer spectroscopy. The results revealed that Cs+ entered the PB crystal to generate a new phase, and most of Sr2+ was trapped in the internal crystal and the other exchanged Fe2+. Furthermore, the effect of co-existing ions and pH on PB adsorption process was also investigated. The results suggest that PB nanorods were an outstanding candidate for removing Cs+ and Sr2+ from radioactive wastewater.


Asunto(s)
Estroncio , Contaminantes Químicos del Agua , Estroncio/análisis , Aguas Residuales , Cesio/química , Ferrocianuros/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA