Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
J Am Chem Soc ; 146(30): 20845-20856, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39041457

RESUMEN

We recently reported on small-molecule inhibitors of the GroES/GroEL chaperone system as potential antibiotics against Escherichia coli and the ESKAPE pathogens but were unable to establish GroES/GroEL as the cellular target, leading to cell death. In this study, using two of our most potent bis-sulfonamido-2-phenylbenzoxazoles (PBZs), we established the binding site of the PBZ molecules using cryo-EM and found that GroEL was the cellular target responsible for the mode of action. Cryo-EM revealed that PBZ1587 binds at the GroEL ring-ring interface (RRI). A cellular reporter assay confirmed that PBZ1587 engaged GroEL in cells, but cellular rescue experiments showed potential off-target effects. This prompted us to explore a closely related analogue, PBZ1038, which is also bound to the RRI. Biochemical characterization showed potent inhibition of Gram-negative chaperonins but much lower potency of chaperonin from a Gram-positive organism, Enterococcus faecium. A cellular reporter assay showed that PBZ1038 also engaged GroEL in cells and that the cytotoxic phenotype could be rescued by a chromosomal copy of E. faecium GroEL/GroES or by expressing a recalcitrant RRI mutant. These data argue that PBZ1038's antimicrobial action is exerted through inhibition of GroES/GroEL, validating this chaperone system as an antibiotic target.


Asunto(s)
Antibacterianos , Chaperonina 10 , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Chaperonina 10/metabolismo , Chaperonina 10/antagonistas & inhibidores , Chaperonina 10/química , Escherichia coli/efectos de los fármacos , Chaperonina 60/metabolismo , Chaperonina 60/antagonistas & inhibidores , Chaperonina 60/química , Benzoxazoles/química , Benzoxazoles/farmacología , Benzoxazoles/síntesis química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química
2.
Curr Opin Microbiol ; 79: 102480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714141

RESUMEN

In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.


Asunto(s)
Chaperonina 10 , Chaperonina 60 , Pliegue de Proteína , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 10/metabolismo , Chaperonina 10/química , Unión Proteica , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética
3.
Structure ; 32(6): 679-689.e4, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38492570

RESUMEN

Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited. In this study, we used single-particle cryogenic electron microscopy to investigate the structures of GroES-bound chaperonin complexes from the thermophilic hydrogen-oxidizing bacteria Hydrogenophilus thermoluteolus and Hydrogenobacter thermophilus in the presence of ATP and AMP-PNP. We captured the structure of an intermediate state chaperonin complex, designated as an asymmetric football-shaped complex, and performed analyses to decipher the dynamic structural variations. Our structural analyses of inter- and intra-subunit communications revealed a unique mechanism of complex formation through the binding of a second GroES to a bullet-shaped complex.


Asunto(s)
Adenosina Trifosfato , Chaperonina 10 , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Chaperonina 10/metabolismo , Chaperonina 10/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Adenilil Imidodifosfato/metabolismo , Adenilil Imidodifosfato/química , Conformación Proteica , Hydrogenophilaceae/metabolismo , Hydrogenophilaceae/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química
4.
Gene ; 900: 148139, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38185292

RESUMEN

The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.


Asunto(s)
Chaperonina 10 , Chenopodiaceae , Plantas Modificadas Genéticamente/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Respuesta al Choque Térmico/genética , Agua/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
5.
Aging (Albany NY) ; 15(22): 12723-12737, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38011257

RESUMEN

We investigated the effects of heat shock protein 10 (HSP10) protein on memory function, hippocampal neurogenesis, and other related genes/proteins in adult and aged mice. To translocate the HSP10 protein into the hippocampus, the Tat-HSP10 fusion protein was synthesized, and Tat-HSP10, not HSP10, was successfully delivered into the hippocampus based on immunohistochemistry and western blotting. Tat-HSP10 (0.5 or 2.0 mg/kg) or HSP10 (control protein, 2.0 mg/kg) was administered daily to 3- and 21-month-old mice for 3 months, and observed the senescence maker P16 was significantly increased in aged mice and the treatment with Tat-HSP10 significantly decreased P16 expression in the hippocampus of aged mice. In novel object recognition and Morris water maze tests, aged mice demonstrated decreases in exploratory preferences, exploration time, distance moved, number of object contacts, and escape latency compared to adult mice. Treatment with Tat-HSP10 significantly improved exploratory preferences, the number of object contacts, and the time spent swimming in the target quadrant in aged mice but not adults. Administration of Tat-HSP10 increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus of adult and aged mice compared to controls, as determined by immunohistochemical staining for Ki67 and doublecortin, respectively. Additionally, Tat-HSP10 treatment significantly mitigated the reduction in sirtuin 1 mRNA level, N-methyl-D-aspartate receptor 1, and postsynaptic density 95 protein levels in the hippocampus of aged mice. In contrast, Tat-HSP10 treatment significantly increased sirtuin 3 protein levels in both adult and aged mouse hippocampus. These suggest that Tat-HSP10 can potentially reduce hippocampus-related aging phenotypes.


Asunto(s)
Chaperonina 10 , Hipocampo , Animales , Ratones , Diferenciación Celular , Chaperonina 10/metabolismo , Chaperonina 10/farmacología , Hipocampo/metabolismo , Neurogénesis , Plasticidad Neuronal , Tirosina Transaminasa/metabolismo
6.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764293

RESUMEN

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Microscopía por Crioelectrón , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Chaperonina 10/metabolismo
7.
Sci Rep ; 12(1): 18321, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316435

RESUMEN

Human mitochondrial chaperonin mHsp60 is broadly associated with various human health conditions and the V72I mutation in mHsp60 causes a form of hereditary spastic paraplegia, a neurodegenerative disease. The main function of mHsp60 is to assist folding of mitochondrial proteins in an ATP-dependent manner. In this study, we unexpectedly found that mutant mHsp60V72I was more stable structurally and more active in the ATPase activity than the wildtype. Analysis of our recently solved cryo-EM structure of mHsp60 revealed allosteric roles of V72I in structural stability and ATPase activity, which were supported by studies including those using the V72A mutation. Despite with the increases in structural stability and ATPase activity, mHsp60V72I was less efficient in folding malate dehydrogenase, a putative mHsp60 substrate protein in mitochondria and also commonly used in chaperonin studies. In addition, although mHsp60V72I along with its cochaperonin mHsp10 was able to substitute the E. coli chaperonin system in supporting cell growth under normal temperature of 37 °C, it was unable under heat shock temperature of 42 °C. Our results support the importance of structural dynamics and an optimal ATP turnover that mHsp60 has evolved for its function and physiology. We propose that unproductive energy utilization, or hyperactive ATPase activity and compromised folding function, not mutually exclusive, are responsible for the V72I pathology in neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Chaperonina 10/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Adenosina Trifosfato/metabolismo , Pliegue de Proteína
8.
Int J Biol Macromol ; 220: 204-210, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970369

RESUMEN

Bone morphogenetic protein 2 (BMP2) when expressed in bacteria forms inclusion bodies (IBs) due to its complex disulfide-rich structure. Chaperons are already well known for their role in assisting protein folding. In our studies, we have used two E. coli strains, BL21(DE3) and SHuffle® T7 cells for overexpressing BMP2 in soluble fraction. We observed that SHuffle® T7 cells successfully expressed soluble functionally active BMP2 in presence of molecular and chemical chaperones at low temperature. The combination of chemical and molecular chaperons further increases the yield of protein. The best-suited chaperon system for overexpression of BMP2 is GroES-GroEL at low temperature. The soluble functionally active BMP2 is confirmed by its binding to its receptor ALK3 through Native PAGE and ELISA assay using BMP2 specific antibody. It is possible to obtain BMP2 expression in soluble active form by using molecular and chemical chaperons which work synergistically in bacterial cells to fold disulphide-rich proteins at low temperature in easy and time saving steps (18 ̊C).


Asunto(s)
Proteína Morfogenética Ósea 2 , Escherichia coli , Proteína Morfogenética Ósea 2/genética , Chaperonina 10/metabolismo , Disulfuros/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
FASEB J ; 36(3): e22198, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199390

RESUMEN

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Asunto(s)
Sitio Alostérico , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
10.
J Am Chem Soc ; 144(6): 2667-2678, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107280

RESUMEN

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Magnesio/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Temperatura
11.
Methods Enzymol ; 659: 171-188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34752284

RESUMEN

A protocol for increasing soluble protein expression by fusing the chaperone GroEL apical domain with a gene of interest is described herein. GroEL apical domain, the minichaperone that functions independently of GroES and ATP in protein folding, is cloned downstream of the lambda CII ribosome binding site in the parent pRE vector. The pRE vector has tightly controlled transcription suitable for expressing toxic proteins. The GroEL minichaperone is fused to a glycine-serine rich linker followed by the enterokinase protease recognition sequence. A number of genes that are recalcitrant to protein production in the parent pRE vector 5were cloned into the pRE:GroEL fusion vector and successfully expressed as fusion proteins in Escherichia coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Pliegue de Proteína
12.
Sci Rep ; 11(1): 18241, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521893

RESUMEN

The GroEL-GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL-GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.


Asunto(s)
Adenosina Difosfato/química , Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Unión Proteica
13.
Sci Rep ; 11(1): 14809, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285302

RESUMEN

Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded ß sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the ß sheet and indirectly shorten ß strands by disengaging the backbones of the flanking residues from hydrogen bonding in the ß strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit ß sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.


Asunto(s)
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Gestacionales/química , Proteínas Gestacionales/metabolismo , Factores Supresores Inmunológicos/química , Factores Supresores Inmunológicos/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
14.
Bioorg Med Chem ; 40: 116129, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33971488

RESUMEN

Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.


Asunto(s)
Antineoplásicos/farmacología , Benzoxazoles/farmacología , Chaperonina 10/antagonistas & inhibidores , Chaperonina 60/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Salicilanilidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzoxazoles/síntesis química , Benzoxazoles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Salicilanilidas/síntesis química , Salicilanilidas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
15.
J Biol Chem ; 296: 100744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33957121

RESUMEN

This review contains a personal account of the role played by the PDB in the development of the field of molecular chaperones and protein homeostasis, from the viewpoint of someone who experienced the concurrent advances in the structural biology, electron microscopy, and chaperone fields. The emphasis is on some key structures, including those of Hsp70, GroEL, Hsp90, and small heat shock proteins, that were determined as the molecular chaperone concept and systems for protein quality control were emerging. These structures were pivotal in demonstrating how seemingly nonspecific chaperones could assist the specific folding pathways of a variety of substrates. Moreover, they have provided mechanistic insights into the ATPase machinery of complexes such as GroEL/GroES that promote unfolding and folding and the disaggregases that extract polypeptides from large aggregates and disassemble amyloid fibers. The PDB has provided a framework for the current success in curating, evaluating, and distributing structural biology data, through both the PDB and the EMDB.


Asunto(s)
Chaperonina 10 , Chaperonina 60 , Bases de Datos de Proteínas , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteolisis , Animales , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos
16.
Bull Exp Biol Med ; 170(6): 699-705, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893951

RESUMEN

We studied the expression of small heat shock proteins HSP10 and HSP27 in left ventricular cardiomyocytes in animals with arterial hypertension, insulin-dependent diabetes mellitus, and their combination. The experiment was performed on 38-week-old male Wistar-Kyoto and 38-57-week-old SHR (spontaneously hypertensive) rats. Insulin-dependent diabetes mellitus was modeled by single parenteral injection of streptozotocin (65 mg/kg). Expression of HSP10 and HSP27 in left ventricular cardiomyocytes was evaluated by immunohistochemical assay. It was found that the content of HSP10 in the left ventricular cardiomyocytes decreased in comparison with the control in case of isolated diabetes mellitus and, on the contrary, increased in case of arterial hypertension combined with diabetes mellitus. The intensity of HSP27 expression decreased in case of 38-week arterial hypertension and a combination of arterial hypertension with diabetes mellitus. However, in case of 57-week arterial hypertension we observed an increase in the content of HSP27 in cardiomyocytes.


Asunto(s)
Chaperonina 10/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Animales , Chaperonina 10/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico Pequeñas/genética , Inmunohistoquímica , Masculino , Hipertensión Arterial Pulmonar/genética , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Estreptozocina
17.
Biochemistry ; 60(6): 460-464, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33464880

RESUMEN

The Escherichia coli ATP-consuming chaperonin machinery, a complex between GroEL and GroES, has evolved to facilitate folding of substrate proteins (SPs) that cannot do so spontaneously. A series of kinetic experiments show that the SPs are encapsulated in the GroEL/ES nanocage for a short duration. If confinement of the SPs is the mechanism by which GroEL/ES facilitates folding, it follows that the assisted folding rate, relative to the bulk value, should always be enhanced. Here, we show that this is not the case for the folding of rhodanese in the presence of the full machinery of GroEL/ES and ATP. The assisted folding rate of rhodanese decreases. On the basis of our finding and those reported in other studies, we suggest that the ATP-consuming chaperonin machinery has evolved to optimize the product of the folding rate and the yield of the folded SPs on the biological time scale. Neither the rate nor the yield is separately maximized.


Asunto(s)
Chaperonina 10/química , Chaperonina 60/química , Pliegue de Proteína , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Conformación Proteica
18.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436430

RESUMEN

As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chaperonins. Herein we report our initial efforts to characterize the GroES/GroEL chaperonins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and -null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable organism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) or both E. coli GroES and GroEL (E. faecium). In addition, GroES/GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all conditions. The resulting viable strains, in which E. coligroESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, but displayed an elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity.IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coligroESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to develop chaperonin-targeted antibiotics.


Asunto(s)
Chaperonina 10/genética , Chaperonina 60/genética , Escherichia coli/genética , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Enterobacter/efectos de los fármacos , Enterobacter/genética , Enterobacter/metabolismo , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/metabolismo , Cinética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
19.
Microscopy (Oxf) ; 70(3): 289-296, 2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-33173948

RESUMEN

Escherichia coli chaperonin GroEL, which is a large cylindrical protein complex comprising two heptameric rings with cavities of 4.5 nm each in the center, assists in intracellular protein folding with the aid of GroES and adenosine triphosphate (ATP). Here, we investigated the possibility that GroEL can also encapsulate metal nanoparticles (NPs) up to ∼5 nm in diameter into the cavities with the aid of GroES and ATP. The slow ATP-hydrolyzing GroELD52A/D398A mutant, which forms extremely stable complexes with GroES (half-time of ∼6 days), made it possible to analyze GroEL/GroES complexes containing metal NPs. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy analysis proved distinctly that FePt NPs and Au NPs were encapsulated in the GroEL/GroES complexes. Dynamic light scattering measurements showed that the NPs in the GroEL/GroES complex were able to maintain their dispersibility in solution. We previously described that the incubation of GroEL and GroES in the presence of ATP·BeFx and adenosine diphosphate·BeFx resulted in the formation of symmetric football-shaped and asymmetric bullet-shaped complexes, respectively. Based on this knowledge, we successfully constructed the football-shaped complex in which two compartments were occupied by Pt or Au NPs (first compartment) and FePt NPs (second compartment). This study showed that metal NPs were sequentially encapsulated according to the GroEL reaction in a step-by-step manner. In light of these results, chaperonin can be used as a tool for handling nanomaterials.


Asunto(s)
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Nanopartículas del Metal/química , Adenosina Trifosfato/metabolismo , Chaperonina 60/genética , Chaperoninas/química , Chaperoninas/genética , Chaperoninas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oro/química , Oro/metabolismo , Hierro/química , Hierro/metabolismo , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Platino (Metal)/química , Platino (Metal)/metabolismo , Unión Proteica , Pliegue de Proteína
20.
Cancer Biomark ; 30(1): 85-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32986659

RESUMEN

BACKGROUND: HSP60 and its partner HSP10 are members of heat shock proteins (HSPs) family, which help mitochondrial protein to fold correctly. Mcl-1, a member of the Bcl-2 family, plays a crucial role in regulation of cell apoptosis. Aberrant expression of HSP10, HSP60 and Mcl-1 is involved in the development of many tumors. OBJECTIVE: To examine the association between expression of HSP10, HSP60 and Mcl-1 and clinicopathological features of non-small cell lung cancer (NSCLC). METHODS: Tissue microarrays including 53 non-cancerous lung tissues (Non-CLT) and 354 surgically resected NSCLC were stained with anti-HSP10, anti-HSP60 and anti-Mcl-1 antibodies respectively by immunohistochemistry. RESULTS: Higher expression of HSP10, HSP60 and Mcl-1 was found in NSCLC compared with Non-CLT. Both individual and combined HSP10 and HSP60 expression in patients with clinical stage III was higher than that in stage I ∼ II. Expression of HSP10 showed a positive correlation with HSP60 and Mcl-1. Overall survival time of NSCLC patients was remarkably shorter with elevated expression of HSP10, HSP60 and Mcl-1 alone and in combination. Moreover overexpression of HSP10 and Mcl-1 was poor independent prognostic factor for lung adenocarcinoma patients. CONCLUSIONS: High expression of HSP10, HSP60 and Mcl-1 might act as novel biomarker of poor prognosis for NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Chaperonina 10/biosíntesis , Chaperonina 60/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Chaperonina 10/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA