Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
PeerJ ; 12: e17565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006022

RESUMEN

Urban populations of herring gulls (Larus argentatus) are increasing and causing human-wildlife conflict by exploiting anthropogenic resources. Gulls that breed in urban areas rely on varying amounts of terrestrial anthropogenic foods (e.g., domestic refuse, agricultural and commercial waste) to feed themselves. However, with the onset of hatching, many parent gulls switch to sourcing more marine than anthropogenic or terrestrial foods to provision their chicks. Although anthropogenic foods may meet chick calorific requirements for growth and development, some such foods (e.g., bread) may have lower levels of protein and other key nutrients compared to marine foods. However, whether this parental switch in chick diet is driven by chicks' preference for marine foods, or whether chicks' food preferences are shaped by the food types provisioned by their parents, remains untested. This study tests whether chick food preferences can be influenced by their provisioned diet by experimentally manipulating the ratio of time for which anthropogenic and marine foods were available (80:20 and vice versa) in the rearing diets of two treatment groups of rescued herring gull chicks. Each diet was randomly assigned to each of the 27 captive-reared chicks for the duration of the study. We tested chicks' individual food preferences throughout their development in captivity using food arrays with four food choices (fish, cat food, mussels and brown bread). Regardless of the dietary treatment group, we found that all chicks preferred fish and almost all refused to eat most of the bread offered. Our findings suggest that early-life diet, manipulated by the ratio of time the different foods were available, did not influence gull chicks' food preferences. Instead, chicks developed a strong and persistent preference for marine foods, which appears to match adult gulls' dietary switch to marine foods upon chick hatching and may reinforce the provisioning of marine foods during chick development. However, whether chicks in the wild would refuse provisioned foods, and to a sufficient extent to influence parental provisioning, requires further study. Longitudinal studies of urban animal populations that track wild individuals' food preferences and foraging specialisations throughout life are required to shed light on the development and use of anthropogenic resource exploitation.


Asunto(s)
Charadriiformes , Dieta , Preferencias Alimentarias , Animales , Charadriiformes/fisiología , Preferencias Alimentarias/psicología , Dieta/veterinaria , Peces , Femenino , Masculino
2.
PLoS One ; 19(7): e0304769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38991012

RESUMEN

Nesting colonial seabirds are prime examples of central-place foragers, animals that must return to a central location (e.g., a breeding colony) after each bout of foraging. They must balance the costs and benefits of foraging with the need to return to their colonies frequently to form pair bonds during courtship, incubate, provision mates and offspring, and protect and rear young. For some populations, the loss and degradation of suitable breeding habitat due to human activities have necessitated the construction of new breeding sites and/or the restoration of previously occupied sites. South Island, which is part of the Hampton Roads Bridge-Tunnel (HRBT) complex in the Commonwealth of Virginia, U.S.A., is a human-created island that supported Virginia's largest mixed species seabird colony until 2020, when the expansion of the HRBT began and when all nesting seabirds were permanently excluded from the site. We studied the movement patterns of foraging common terns (Sterna hirundo) to determine how travel to and around foraging sites related to their colony location and to inform the siting and construction of a new breeding island. We tracked 18 individual common terns from 07 June to 29 June 2018, and we used a hidden Markov model to assign behavioral states and investigate common tern movements around the HRBT. Common terns spent more than half their time in the colony (58%), followed by time devoted to foraging (22%), and the remainder of their time was spent on outbound (15%) and inbound (5%) transit. Terns traveled as far as 98km from the colony, but on average foraged relatively close to South Island (13.6 ± 0.3km, mean ± 1 SD). Individuals tended to forage in the same locations, but there was variation among individuals. Flying to foraging sites uses energy during the already energetically costly breeding season, thus managers should prioritize placing a new colony site in a location that minimizes the distance traveled to the foraging locations frequented by the South Island birds while accounting for other life-history characteristics. These findings could help in the design and construction of new breeding sites or the restoration of current sites for other, related species, particularly for which these data do not exist.


Asunto(s)
Charadriiformes , Animales , Virginia , Charadriiformes/fisiología , Comportamiento de Nidificación/fisiología , Ecosistema , Cruzamiento , Femenino , Masculino , Conducta Alimentaria/fisiología , Reproducción/fisiología , Migración Animal/fisiología
3.
Biol Lett ; 20(7): 20240177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982849

RESUMEN

While various marine predators form associations, the most commonly studied are those between subsurface predators and seabirds, with gulls, shearwaters or terns frequently co-occurring with dolphins, billfish or tuna. However, the mechanisms underlying these associations remain poorly understood. Three hypotheses have been proposed to explain the prevalence of these associations: (1) subsurface predators herd prey to the surface and make prey accessible to birds, (2) subsurface predators damage prey close to the surface and thereby provide food scraps to birds, and (3) attacks of underwater predators lower the cohesion of prey groups and thereby their collective defences making the prey easier to be captured by birds. Using drone footage, we investigated the interaction between Indo-Pacific sailfish (Istiophorus platypterus) and terns (Onychoprion sp.) preying on schooling fish off the eastern coast of the Malaysian peninsula. Through spatio-temporal analysis of the hunting behaviour of the two predatory species and direct measures of prey cohesion we showed that terns attacked when school cohesion was low, and that this decrease in cohesion was frequently caused by sailfish attacks. Therefore, we propose that sailfish created a by-product benefit for the bird species, lending support to the hypothesis that lowering cohesion can facilitate associations between subsurface predators and seabirds.


Asunto(s)
Conducta Predatoria , Animales , Charadriiformes/fisiología , Peces/fisiología , Malasia , Cadena Alimentaria , Aves/fisiología , Conducta Alimentaria
4.
Proc Biol Sci ; 291(2024): 20240397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864333

RESUMEN

In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.


Asunto(s)
Charadriiformes , Conducta Sexual Animal , Animales , Femenino , Masculino , Charadriiformes/fisiología , Charadriiformes/genética , Cromosomas Sexuales , Selección Genética , Evolución Biológica , Flujo Genético , Selección Sexual
5.
PLoS One ; 19(6): e0304275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865310

RESUMEN

The major histocompatibility complex (MHC) plays a key role in the adaptive immune system of vertebrates, and is known to influence mate choice in many species. In birds, the MHC has been extensively examined but mainly in galliforms and passerines while other taxa that represent specific ecological and evolutionary life-histories, like seabirds, are underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC variation could be maintained through balancing selection and disassortative mating. We found high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles across 140 individuals from three populations. The alleles frequencies exhibited a similar skewed distribution in both sexes, with the four most commonly occurring alleles representing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection analysis suggest evidence of balancing selection and no direct evidence for MHC-dependent disassortative mating preferences in the Little Auk. The latter result might be attributed to the high overall polymorphism of the examined fragment, which itself may be maintained by the large population size of the species.


Asunto(s)
Alelos , Animales , Femenino , Masculino , Frecuencia de los Genes , Variación Genética , Selección Genética , Polimorfismo Genético , Preferencia en el Apareamiento Animal/fisiología , Aves/genética , Aves/fisiología , Charadriiformes/genética , Charadriiformes/fisiología , Charadriiformes/inmunología , Teorema de Bayes , Filogenia , Genes MHC Clase II/genética
6.
Proc Biol Sci ; 291(2024): 20240624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835274

RESUMEN

Optimal migration theory prescribes adaptive strategies of energy, time or mortality minimization. To test alternative hypotheses of energy- and time-minimization migration we used multisensory data loggers that record time-resolved flight activity and light for positioning by geolocation in a long-distance migratory shorebird, the little ringed plover, Charadrius dubius. We could reject the hypothesis of energy minimization based on a relationship between stopover duration and subsequent flight time as predicted for a time minimizer. We found seasonally diverging slopes between stopover and flight durations in relation to the progress (time) of migration, which follows a time-minimizing policy if resource gradients along the migration route increase in autumn and decrease in spring. Total flight duration did not differ significantly between autumn and spring migration, although spring migration was 6% shorter. Overall duration of autumn migration was longer than that in spring, mainly owing to a mid-migration stop in most birds, when they likely initiated moult. Overall migration speed was significantly different between autumn and spring. Migratory flights often occurred as runs of two to seven nocturnal flights on adjacent days, which may be countering a time-minimization strategy. Other factors may influence a preference for nocturnal migration, such as avoiding flight in turbulent conditions, heat stress and diurnal predators.


Asunto(s)
Migración Animal , Charadriiformes , Vuelo Animal , Estaciones del Año , Animales , Charadriiformes/fisiología , Factores de Tiempo , Metabolismo Energético
7.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853470

RESUMEN

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Asunto(s)
Artrópodos , Biomasa , Estaciones del Año , Temperatura , Animales , Regiones Árticas , Artrópodos/fisiología , Cambio Climático , Cadena Alimentaria , Charadriiformes/fisiología , Migración Animal
8.
J Anim Ecol ; 93(7): 849-861, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751173

RESUMEN

Understanding the maintenance and dynamics of phenotypic polymorphisms requires unpicking key ecological mechanisms shaping the fitness costs and benefits of expressing alternative phenotypes, generating selection. Seasonal migration versus year-round residence expressed in partially migratory populations represents one common polymorphism that can experience strong selection through differential reproductive success. Yet, key hypothesised pathways that could generate such selection remain to be empirically tested. One hypothesis is that migratory tactics affect subsequent reproductive success through carry-over effects on breeding site retention and resulting breeding dispersal. By remaining in breeding areas all year round, residents could retain their preferred breeding site between years, and consequently have higher reproductive success. Conversely, migrants that escape harsh non-breeding season conditions could return in better condition, with high resource holding potential, and outcompete residents to retain their site. Such effects could further depend on migration timing and vary between years. Yet, such pathways have not been quantified, precluding empirical parameterisation of partial migration theory. We used 4 years of breeding and non-breeding season data from partially migratory European shags (Gulosus aristotelis) to test whether the three most frequent migratory tactics in this population (full resident, early migrant departing soon after breeding, and late migrant departing in late autumn) differed in their breeding site retention; whether site retention predicted reproductive success; and hence whether effects of migratory tactic on reproductive success were explicable through site retention. Overall, residents were much more likely to retain their breeding site between years than both early and late migrants, and site retention was associated with increased reproductive success. Yet, these effects varied somewhat among years: late migrants were always least likely to retain their site but had variable relative reproductive success. Path analyses revealed that effects of migratory tactic on reproductive success were only partly attributable to breeding site retention. These results indicate that multiple mechanisms underlie reproductive selection on migratory tactics, potentially contributing to maintaining behavioural polymorphisms. Yet, the clear associations between migratory tactics and local breeding dispersal reveal that these movements can be strongly interlinked across seasons, shaping overall spatioseasonal dynamics in partially migratory systems.


Asunto(s)
Migración Animal , Reproducción , Estaciones del Año , Animales , Femenino , Masculino , Charadriiformes/fisiología , Charadriiformes/genética
9.
Gen Comp Endocrinol ; 355: 114545, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701975

RESUMEN

In birds, patterns of development of the adrenocortical response to stressors vary among individuals, types of stressors, and species. Since there are benefits and costs of exposure to elevated glucocorticoids, this variation is presumably a product of selection such that animals modulate glucocorticoid secretion in contexts where doing so increases their fitness. In this study, we evaluated hypothalamo-pituitary-adrenal (HPA) activity in first-hatched free-living seabird nestlings that engage in intense sibling competition and facultative siblicide (black-legged kittiwakes, Rissa tridactyla). We sampled 5 day old chicks (of the ∼45 day nestling period), a critical early age when food availability drives establishment of important parent-offspring and intra-brood dynamics. We experimentally supplemented parents with food ("supplemented") and measured chick baseline corticosterone secretion and capacity to rapidly increase corticosterone in response to an acute challenge (handling and 15 min of restraint in a bag). We also used topical administration of corticosterone to evaluate the ability of chicks to downregulate physiologically relevant corticosterone levels on a short time scale (minutes). We found that 5 day old chicks are not hypo-responsive but release corticosterone in proportion to the magnitude of the challenge, showing differences in baseline between parental feeding treatments (supplemented vs non-supplemented), moderate increases in response to handling, and a larger response to restraint (comparable to adults) that also differed between chicks from supplemented and control nests. Topical application of exogenous corticosterone increased circulating levels nearly to restraint-induced levels and induced downregulation of HPA responsiveness to the acute challenge of handling. Parental supplemental feeding did not affect absorbance/clearance or negative feedback. Thus, while endogenous secretion of corticosterone in young chicks is sensitive to environmental context, other aspects of the HPA function, such as rapid negative feedback and/or the ability to clear acute elevations in corticosterone, are not. We conclude that 5 day old kittiwake chicks are capable of robust adrenocortical responses to novel challenges, and are sensitive to parental food availability, which may be transduced behaviorally, nutritionally, or via maternal effects. Questions remain about the function of such rapid, large acute stress-induced increases in corticosterone in very young chicks.


Asunto(s)
Charadriiformes , Corticosterona , Animales , Corticosterona/metabolismo , Corticosterona/sangre , Charadriiformes/fisiología , Charadriiformes/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Estrés Fisiológico , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Femenino , Masculino
10.
Proc Natl Acad Sci U S A ; 121(22): e2321294121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771872

RESUMEN

Males and females often have different roles in reproduction, although the origin of these differences has remained controversial. Explaining the enigmatic reversed sex roles where males sacrifice their mating potential and provide full parental care is a particularly long-standing challenge in evolutionary biology. While most studies focused on ecological factors as the drivers of sex roles, recent research highlights the significance of social factors such as the adult sex ratio. To disentangle these propositions, here, we investigate the additive and interactive effects of several ecological and social factors on sex role variation using shorebirds (sandpipers, plovers, and allies) as model organisms that provide the full spectrum of sex role variation including some of the best-known examples of sex-role reversal. Our results consistently show that social factors play a prominent role in driving sex roles. Importantly, we show that reversed sex roles are associated with both male-skewed adult sex ratios and high breeding densities. Furthermore, phylogenetic path analyses provide general support for sex ratios driving sex role variations rather than being a consequence of sex roles. Together, these important results open future research directions by showing that different mating opportunities of males and females play a major role in generating the evolutionary diversity of sex roles, mating system, and parental care.


Asunto(s)
Evolución Biológica , Razón de Masculinidad , Conducta Sexual Animal , Medio Social , Animales , Femenino , Masculino , Conducta Sexual Animal/fisiología , Reproducción/fisiología , Charadriiformes/fisiología , Filogenia , Aves/fisiología , Rol de Género
11.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700127

RESUMEN

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Asunto(s)
Isótopos de Carbono , Charadriiformes , Plumas , Isótopos de Nitrógeno , Isótopos de Azufre , Animales , Plumas/química , Isótopos de Azufre/análisis , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Charadriiformes/fisiología , Charadriiformes/metabolismo , Espectrometría de Masas/métodos
12.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771086

RESUMEN

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Asunto(s)
Migración Animal , Cambio Climático , Comportamiento de Nidificación , Estaciones del Año , Animales , Regiones Árticas , Migración Animal/fisiología , Femenino , Charadriiformes/fisiología , Reproducción
13.
Horm Behav ; 163: 105549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663281

RESUMEN

The peptide hormone prolactin plays an important role in the expression of parental care behaviours across bird and mammal taxa. While a great deal is known about how plasma prolactin concentrations vary across the reproductive cycle, the few studies that investigate how prolactin relates to individual-level variation in parental care have reported mixed results. We argue that, since parental care is also affected by social interactions and environmental constraints, prolactin may better reflect behaviours that are indirectly related to parenting than the absolute level of care that is eventually expressed. In this study, we tested for associations between plasma prolactin and the expression of both parental care and proximity to the partner in incubating black-headed gulls, Chroicocephalus ridibundus. Baseline prolactin levels increased with calendar date but were unrelated to incubation behaviours. However, parents who showed a weaker decrease in prolactin to an acute stressor spent more time in close proximity to their incubating partner while not on the nest themselves, suggesting that individual variation in stress-induced prolactin changes reflect differences in parents' tendency to be closely associated with their partner and the joint nesting attempt. Baseline and stress-induced levels of the stress hormone corticosterone were unrelated to both prolactin levels and parental behaviours, suggesting that this hormone is not a strong moderator of parental care in black-headed gulls. One potential explanation for the link between prolactin dynamics and partner proximity is that prolactin reflects parental motivation to provide parental care or retain contact with the breeding partner, but further work is needed to directly test this hypothesis.


Asunto(s)
Charadriiformes , Conducta Materna , Comportamiento de Nidificación , Conducta Paterna , Prolactina , Animales , Charadriiformes/fisiología , Charadriiformes/sangre , Prolactina/sangre , Femenino , Comportamiento de Nidificación/fisiología , Conducta Paterna/fisiología , Conducta Materna/fisiología , Masculino , Corticosterona/sangre
14.
Sci Rep ; 14(1): 9248, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649736

RESUMEN

Urbanisation has contributed to a severe decline in biodiversity worldwide. However, urban ecosystems can also play an important role in the conservation of threatened species, including ground-nesting birds such as the Eurasian Oystercatcher (Haematopus ostralegus). While the coastal populations of this shorebird have declined sharply, there is growing evidence that pairs nesting on urban flat roofs have high reproductive success. However, the reasons for rooftop nesting and the species' habitat use in urban areas remain poorly understood. In this study, we investigate the territory selection and foraging behaviour of the Eurasian Oystercatcher in the city of Münster (NW Germany). All nesting sites were located on flat roofs (N = 24), most of which were covered with gravel. Overall, reproductive success was high. This was mainly because the roofs provided protection from mammalian predators, leading to increased nest and chick survival. Moreover, breeding performance in the study area was favoured by the proximity of sports pitches. According to our observations, they provided a large amount of easily accessible prey throughout the breeding season. Overall, our study highlights that the reproductive success of the Eurasian Oystercatcher in urban environments is highly dependent on both safe nesting sites on flat roofs and the availability of suitable foraging habitats. Although our study suggests that breeding in urban areas can be beneficial for the model organism, the species' strong territory fidelity makes it very sensitive to the rapid environmental changes occurring in cities. The value of urban ecosystems for bird conservation should therefore be better integrated into urban planning and management.


Asunto(s)
Ecosistema , Comportamiento de Nidificación , Animales , Comportamiento de Nidificación/fisiología , Conservación de los Recursos Naturales/métodos , Reproducción/fisiología , Alemania , Charadriiformes/fisiología , Ciudades , Deportes , Especies en Peligro de Extinción
15.
J R Soc Interface ; 21(213): 20230734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38654630

RESUMEN

Avian wing morphing allows dynamic, active control of complex flight manoeuvres. Previous linear time-invariant (LTI) models have quantified the effect of varying fixed wing configurations but the time-dependent effects of morphing between different configurations is not well understood. To fill this gap, I implemented a linear parameter-varying (LPV) model for morphing wing gull flight. This approach models the wing joint angles as scheduled parameters and accounts for nonlinear kinematic and gravitational effects while interpolating between LTI models at discrete trim points. With the resulting model, I investigated the longitudinal response associated with various joint extension trajectories. By optimizing the extension trajectory for four independent objectives (speed and pitch angle overshoot, speed rise time and pitch angle settling time), I found that the extension trajectory inherent to the gull wing does not guarantee an optimal response but may provide a sufficient response with a simpler mechanical implementation. Furthermore, the results indicated that gulls likely require extension speed feedback. This morphing LPV model provides insights into underlying control mechanisms, which may allow for avian-like flight in future highly manoeuvrable uncrewed aerial vehicles.


Asunto(s)
Vuelo Animal , Modelos Biológicos , Alas de Animales , Vuelo Animal/fisiología , Animales , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Fenómenos Biomecánicos , Charadriiformes/fisiología , Charadriiformes/anatomía & histología
16.
Mar Pollut Bull ; 202: 116327, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581734

RESUMEN

The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.


Asunto(s)
Charadriiformes , Instalaciones de Eliminación de Residuos , Animales , Charadriiformes/fisiología , Monitoreo del Ambiente
17.
Proc Biol Sci ; 291(2015): 20231887, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228179

RESUMEN

Arctic birds and mammals are physiologically adapted to survive in cold environments but live in the fastest warming region on the planet. They should therefore be most threatened by climate change. We fitted a phylogenetic model of upper critical temperature (TUC) in 255 bird species and determined that TUC for dovekies (Alle alle; 22.4°C)-the most abundant seabird in the Arctic-is 8.8°C lower than predicted for a bird of its body mass (150 g) and habitat latitude. We combined our comparative analysis with in situ physiological measurements on 36 dovekies from East Greenland and forward-projections of dovekie energy and water expenditure under different climate scenarios. Based on our analyses, we demonstrate that cold adaptation in this small Arctic seabird does not handicap acute tolerance to air temperatures up to at least 15°C above their current maximum. We predict that climate warming will reduce the energetic costs of thermoregulation for dovekies, but their capacity to cope with rising temperatures will be constrained by water intake and salt balance. Dovekies evolved 15 million years ago, and their thermoregulatory physiology might also reflect adaptation to a wide range of palaeoclimates, both substantially warmer and colder than the present day.


Asunto(s)
Charadriiformes , Ecosistema , Animales , Filogenia , Charadriiformes/fisiología , Aves , Cambio Climático , Mamíferos , Regiones Árticas
18.
PLoS One ; 19(1): e0295946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232078

RESUMEN

Climate change imposes physiological constraints on organisms particularly through changing thermoregulatory requirements. Bergmann's and Allen's rules suggest that body size and the size of thermoregulatory structures differ between warm and cold locations, where body size decreases with temperature and thermoregulatory structures increase. However, phenotypic plastic responses to malnutrition during development can result in the same patterns while lacking fitness benefits. The Gulf of Maine (GOM), located at the southern end of the Labrador current, is warming faster than most of the world's oceans, and many of the marine species that occupy these waters exist at the southern edge of their distributions including Atlantic puffins (Fratercula arctica; hereafter "puffin"). Monitoring of puffins in the GOM, at Machias Seal Island (MSI), has continued annually since 1995. We asked whether changes in adult puffin body size and the proportional size of bill to body have changed with observed rapid ocean warming. We found that the size of fledgling puffins is negatively related to sea surface temperature anomalies (warm conditions = small fledgers), adult puffin size is related to fledgling size (small fledgers = small adults), and adult puffins have decreased in size in recent years in response to malnutrition during development. We found an increase in the proportional size of bill to wing chord, likely in response to some mix of malnutrition during development and increasing air temperatures. Although studies have assessed clinal variation in seabird morphology with temperature, this is the first study addressing changes in seabird morphology in relation to ocean warming. Our results suggest that puffins nesting in the GOM have morphological plasticity that may help them acclimate to ocean warming.


Asunto(s)
Charadriiformes , Desnutrición , Animales , Charadriiformes/fisiología , Frío , Océanos y Mares , Temperatura
19.
Biol Lett ; 19(11): 20230391, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991194

RESUMEN

In many animals, males compete for access to fertile females. The resulting sexual selection leads to sex differences in morphology and behaviour, but may also have consequences for physiology. Pectoral sandpipers are an arctic-breeding polygynous shorebird in which males perform elaborate displays around-the-clock and move over long distances to sample potential breeding sites, implying the need for physiological adaptations to cope with extreme endurance. We examined the oxygen carrying capacity of pectoral sandpipers, measured as the volume percentage of red blood cells in blood (haematocrit, Hct). We found a remarkable sex difference in Hct levels, with males having much higher values (58.9 ± 3.8 s.d.) than females (49.8 ± 5.3 s.d.). While Hct values of male pectoral sandpipers are notable for being among the highest recorded in birds, the sex difference we report is unprecedented and more than double that of any previously described. We also show that Hct values declined after arrival to the breeding grounds in females, but not in males, suggesting that males maintain an aerobic capacity during the mating period equivalent to that sustained during trans-hemispheric migration. We conclude that sexual selection for extreme physical performance in male pectoral sandpipers has led to exceptional sex differences in oxygen carrying capacity.


Asunto(s)
Charadriiformes , Caracteres Sexuales , Animales , Femenino , Masculino , Selección Sexual , Conservación de los Recursos Naturales , Conducta Sexual Animal/fisiología , Aves/fisiología , Charadriiformes/fisiología
20.
J Exp Biol ; 226(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37990955

RESUMEN

Energetics can provide novel insights into the roles of animals, but employing an energetics approach has traditionally required extensive empirical physiological data on the focal species, something that can be challenging for those that inhabit marine environments. There is therefore a demand for a framework through which to estimate energy expenditure from readily available data. We present the energetic costs associated with important time- and energy-intensive behaviours across nine families of marine bird (including seabirds, ducks, divers and grebes) and nine ecological guilds. We demonstrate a worked example, calculating the year-round energetic expenditure of the great auk, Pinguinus impennis, under three migration scenarios, thereby illustrating the capacity of this approach to make predictions for data-deficient species. We provide a comprehensive framework through which to model marine bird energetics and demonstrate the power of this approach to provide novel, quantitative insights into the influence of marine birds within their ecosystems.


Asunto(s)
Charadriiformes , Ecosistema , Animales , Aves/fisiología , Charadriiformes/fisiología , Patos , Metabolismo Energético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA