Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107.110
Filtrar
1.
Platelets ; 35(1): 2347331, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38722091

RESUMEN

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Asunto(s)
Criopreservación , Plasma Rico en Plaquetas , Cicatrización de Heridas , Plasma Rico en Plaquetas/metabolismo , Humanos , Criopreservación/métodos , Proliferación Celular , Movimiento Celular , Fibroblastos/metabolismo
2.
Wounds ; 36(4): 108-114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38743855

RESUMEN

BACKGROUND: HOCl (eg, pHAp) preserved solutions have antimicrobial properties and are considered safe and effective for wound management. NPWTi-d (or NPWTi) is an established adjunctive wound modality for a variety of wound etiologies in various anatomic locations in which an instillate solution dwells on the surface of the wound to assist in wound bed preparation. A variety of solutions have been used, including 0.9% normal saline wound cleansers and antiseptics. pHAp is growing in popularity as the solution of choice for NPWTi-d. OBJECTIVE: To evaluate consensus statements on the use of NPWTi-d with pHAp. METHODS: A 15-member multidisciplinary panel of expert clinicians in the United States, Canada, and France convened in person in April 2023 in Washington, D.C. and/or corresponded later to discuss 10 statements on the use of pHAp with NPWTi-d. The panelists then replied "agree" or "disagree" to each statement and had the option to provide comments. RESULTS: Ten consensus statements are presented, along with the proportion of agreement or disagreement and summary comments. Although agreement with the statements on NPWTi-d with pHAp varied, the statements appear to reflect individual preferences for use rather than concerns about safety or efficacy. CONCLUSION: The consensus indicates that NPWTi-d with pHAp can have a beneficial effect in wound care.


Asunto(s)
Consenso , Ácido Hipocloroso , Terapia de Presión Negativa para Heridas , Cicatrización de Heridas , Humanos , Terapia de Presión Negativa para Heridas/métodos , Ácido Hipocloroso/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/terapia , Irrigación Terapéutica/métodos , Canadá , Infección de Heridas/prevención & control , Infección de Heridas/tratamiento farmacológico , Estados Unidos
3.
Wounds ; 36(4): 124-128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38743858

RESUMEN

BACKGROUND: Managing complex traumatic soft tissue wounds involving a large surface area while attempting to optimize healing, avoid infection, and promote favorable cosmetic outcomes is challenging. Regenerative materials such as ECMs are typically used in wound care to enhance the wound healing response and proliferative phase of tissue formation. CASE REPORT: The case reported herein is an example of the efficacious use of an SEFM in the surgical management of a large complex traumatic wound involving the left lower extremity and lower abdominal region. The wound bed was successfully prepared for skin grafting over an area of 1200 cm2, making this among the largest applications of the SEFM reported in the literature. CONCLUSION: This case report demonstrates the clinical versatility of the SEFM and a synergistic approach to complex traumatic wound care. The SEFM was successfully used to achieve tissue granulation for a successful skin graft across a large surface in an anatomic region with complex topography.


Asunto(s)
Lesiones por Desenguantamiento , Ingle , Trasplante de Piel , Muslo , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Trasplante de Piel/métodos , Lesiones por Desenguantamiento/cirugía , Masculino , Resultado del Tratamiento , Traumatismos de los Tejidos Blandos/cirugía , Adulto
4.
Wounds ; 36(4): 129-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38743859

RESUMEN

BACKGROUND: Recently, micronized adipose tissue (MAT) grafts have shown promising results in wound healing, including diabetic ulcers. OBJECTIVE: To assess the possibility of using 3D printed MAT niche grafts in the management of skin and soft tissue defects resulting from non-melanoma skin cancer (NMSC) resections. MATERIALS AND METHODS: A retrospective feasibility study was conducted on patients with skin and soft tissue defects resulting from NMSC resections. Twenty-one patients were treated using either artificial dermis (n = 11) or MAT niche (n = 10) grafting. Healing time and POSAS scores were compared. The Mann-Whitney U test and the Pearson chi-square test were used in statistical analysis to compare between and within groups based on preoperative and postoperative measurements. RESULTS: Wounds in the MAT niche group reepithelialized significantly faster than those in the artificial dermis group (mean [SD] 39.2 [11.4] days vs 63.7 [34.8] days; P = .04). In the 21 scar parameters evaluated, the MAT niche group demonstrated significantly superior outcomes in only 2 parameters based on operator assessment scores: relief (mean [SD] 1.6 [0.7] vs 2.2 [0.6]; P = .047) and scar contracture (mean [SD] 1.3 [0.5] vs 2.5 [1.0]; P = .011). CONCLUSION: This study proves the feasibility of exploring the effects of MAT niche grafting following NMSC excision on healing time and specific parameters of scarring, including scar relief and scar contracture.


Asunto(s)
Tejido Adiposo , Estudios de Factibilidad , Neoplasias Cutáneas , Piel Artificial , Cicatrización de Heridas , Humanos , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/patología , Proyectos Piloto , Masculino , Cicatrización de Heridas/fisiología , Femenino , Estudios Retrospectivos , Tejido Adiposo/trasplante , Anciano , Persona de Mediana Edad , Resultado del Tratamiento , Trasplante de Piel/métodos
5.
Rev Esc Enferm USP ; 58: e20230338, 2024.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-38743957

RESUMEN

OBJECTIVE: To map the nanocomposites used in the treatment of skin lesions. METHOD: A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). RESULTS: 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. CONCLUSION: Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.


Asunto(s)
Nanocompuestos , Enfermedades de la Piel , Cicatrización de Heridas , Humanos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/terapia , Plata , Nanofibras , Antiinfecciosos/administración & dosificación
6.
Pak J Pharm Sci ; 37(1(Special)): 185-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747268

RESUMEN

Burn is a debilitating and devastating emergency with many physical and psychological sequelae. Essential steps in burn wound management include cleansing/wound debridement, application of topical antimicrobial and dressing of affected body areas. Objective of this study is comparison in effectiveness of Hydro-fiber Silver dressing and 1% silver sulfadiazine dressing in management of pediatric burn patients in terms of wound healing. After ethical approval, 264 patients were enrolled and divided into two groups. Patients were managed with hydro-fiber silver dressing in group A and 1% silver sulfadiazine dressing in group B. An experienced pediatric surgeon examined the wounds for re epithelialization and efficacy was labeled after 15 days. Out of 264 enrolled patients 148(56.06%) were males and 116(43.94%) were females. Mean age of patients was 3.73±2.34 years. Type of burn was Scald in 215(81.4%) patients and flame in 49(18.6%). Depth of burn was 2nd degree in 185(70.08%) patients and 3rd degree in 79(29.92%) patients. Mean TBSA was 19.93±9.62%. In group A the efficacy was achieved in 91(68.9%) patients whereas in group B the efficacy was achieved in 73(55.3%) patients (p-value<0.05). Hydro-fiber Silver dressing is significantly more efficacious as compared to 1% silver sulfadiazine dressing for treatment of pediatric burn.


Asunto(s)
Vendajes , Quemaduras , Sulfadiazina de Plata , Humanos , Sulfadiazina de Plata/uso terapéutico , Sulfadiazina de Plata/administración & dosificación , Quemaduras/terapia , Quemaduras/tratamiento farmacológico , Femenino , Masculino , Preescolar , Niño , Cicatrización de Heridas/efectos de los fármacos , Resultado del Tratamiento , Lactante , Antiinfecciosos Locales/uso terapéutico , Antiinfecciosos Locales/administración & dosificación , Plata/uso terapéutico
7.
Braz Oral Res ; 38: e038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747825

RESUMEN

The aim of this systematic review was to answer the following question: "Does alendronate, a nitrogen-containing bisphosphonate, improve or impair alveolar socket healing after tooth extraction in animal models"? To this end, a systematic review of the literature was carried out in PubMed, Scopus, LILACS, Web of Science, as well as in the gray literature up to May 2023. Preclinical studies that evaluated alveolar healing after tooth extraction and the intake of sodium alendronate compared with placebo were included. Two investigators were responsible for screening the articles independently, extracting the data, and assessing their quality through the SYRCLE's RoB tool for randomized trials in animal studies. The study selection process, study characteristics, risk of bias in studies, impact of alendronate on bone healing, and certainty of evidence were described in text and table formats. Methodological differences among the studies were restricted to the synthesis methods. The synthesis of qualitative results followed the Synthesis Without Meta-analysis (SWiM) reporting guideline. From the 19 included studies, five were considered to have low risk, three were of unclear risk, and eleven presented a high risk of bias. The studies were considered heterogeneous regarding alendronate posology, including its dosage and route of administration. Furthermore, a variety of animal species, different age ranges, diverse teeth extracted, and exposure or not to ovariectomy contributed to the lack of parity of the selected studies. Our results indicated that alendronate monotherapy negatively affects the early phase of wound healing after tooth extraction in preclinical studies, suggesting that the bone resorption process after tooth extraction in animals treated with alendronate might impair the bone healing process of the extraction socket. In conclusion, alendronate administration restrains bone resorption, thereby delaying alveolar socket healing . Future studies should be conducted to validate these findings and to better understand the effects of alendronate therapy on oral tissues.


Asunto(s)
Alendronato , Conservadores de la Densidad Ósea , Extracción Dental , Alveolo Dental , Cicatrización de Heridas , Alendronato/farmacología , Alendronato/uso terapéutico , Extracción Dental/efectos adversos , Animales , Cicatrización de Heridas/efectos de los fármacos , Alveolo Dental/efectos de los fármacos , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico
9.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748314

RESUMEN

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Asunto(s)
Celulosa , Mucosa Intestinal , Intestino Delgado , Nanopartículas del Metal , Nanofibras , Ratas Wistar , Plata , Andamios del Tejido , Cicatrización de Heridas , Animales , Plata/química , Celulosa/análogos & derivados , Celulosa/química , Cicatrización de Heridas/efectos de los fármacos , Nanopartículas del Metal/química , Ratas , Nanofibras/química , Andamios del Tejido/química , Mucosa Intestinal/metabolismo , Masculino , Intestino Delgado/metabolismo , Bovinos , Factor de Crecimiento Transformador beta/metabolismo , Ingeniería de Tejidos/métodos , Colágeno
10.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731435

RESUMEN

Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable ß-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.


Asunto(s)
Mucosa Gástrica , Hidrogeles , Péptidos , Factor Trefoil-3 , Hidrogeles/química , Factor Trefoil-3/química , Factor Trefoil-3/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/lesiones , Péptidos/química , Péptidos/farmacología , Animales , Humanos , Sistemas de Liberación de Medicamentos , Ratones , Cicatrización de Heridas/efectos de los fármacos
11.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731484

RESUMEN

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Asunto(s)
Antioxidantes , Emulsionantes , Emulsiones , Ácido Glicirrínico , Simulación del Acoplamiento Molecular , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Emulsiones/química , Emulsionantes/química , Emulsionantes/farmacología , Ratas , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , Polisacáridos/química , Polisacáridos/farmacología , Tecnología Química Verde , Humanos , Ratas Sprague-Dawley , Nanopartículas/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Fabaceae/química , Masculino , Tamaño de la Partícula , Movimiento Celular/efectos de los fármacos
12.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731540

RESUMEN

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Asunto(s)
Deferoxamina , Neovascularización Fisiológica , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Humanos , Animales , Neovascularización Fisiológica/efectos de los fármacos , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Angiogénesis
13.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731569

RESUMEN

Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.


Asunto(s)
Cinnamomum , Aceites Volátiles , Cicatrización de Heridas , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cicatrización de Heridas/efectos de los fármacos , Cinnamomum/química , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Movimiento Celular/efectos de los fármacos , Piel/efectos de los fármacos , Humanos
14.
FASEB J ; 38(10): e23626, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38739537

RESUMEN

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Macrófagos/metabolismo , Animales , Tejido Adiposo/citología , Humanos , Ratones , Estrés Mecánico , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Masculino , Factor Estimulante de Colonias de Macrófagos/metabolismo , Trasplante de Células Madre/métodos , Inflamación/terapia , Ratones Endogámicos C57BL
15.
BMC Oral Health ; 24(1): 539, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720276

RESUMEN

BACKGROUND: This study aimed to demonstrate the efficacy of erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser-assisted nonsurgical periodontal therapy in periodontitis patients during 8 weeks of healing. METHODS: A split-mouth, single-blinded, randomized controlled clinical trial was conducted on 12 patients diagnosed with stage III/IV periodontitis and had a minimum of two teeth with probing pocket depth (PPD) > 5 mm in at least two quadrants. Upon randomization, each quadrant was assigned for conventional scaling and root planing (SRP) procedure or laser-assisted therapy (SRP + laser) using radial firing tip (RFPT 5, Biolase). Clinical measurements and gingival crevicular fluid collection were performed for statistical analysis. RESULTS: In the initial statistical analysis on the whole subject teeth, modified gingival index (MGI) reduction was greater in test group at 1(P = 0.0153), 4 (P = 0.0318), and 8 weeks (P = 0.0047) compared to the control in the same period. PPD reduction at 4 weeks in test group was -1.67 ± 0.59 showing significant difference compared to the control (-1.37 ± 0.63, P = 0.0253). When teeth with mean PPD ≥5 mm were sorted, MGI decrease was significantly greater in test group at 1 (P=0.003) and 8 week (P=0.0102) follow-ups. PPD reduction was also significantly greater in test group at 4 week period (-1.98 ± 0.55 vs -1.58 ± 0.56, test vs control, P=0.0224). CONCLUSIONS: Er,Cr:YSGG-assisted periodontal therapy is beneficial in MGI and PPD reductions during early healing period.


Asunto(s)
Raspado Dental , Líquido del Surco Gingival , Láseres de Estado Sólido , Índice Periodontal , Bolsa Periodontal , Aplanamiento de la Raíz , Humanos , Método Simple Ciego , Femenino , Masculino , Láseres de Estado Sólido/uso terapéutico , Adulto , Raspado Dental/métodos , Líquido del Surco Gingival/química , Persona de Mediana Edad , Aplanamiento de la Raíz/métodos , Bolsa Periodontal/terapia , Cicatrización de Heridas , Resultado del Tratamiento , Estudios de Seguimiento , Cromo/uso terapéutico , Periodontitis/terapia , Galio/uso terapéutico
16.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730090

RESUMEN

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Asunto(s)
Portadores de Fármacos , Péptidos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , Péptidos/química , Péptidos/administración & dosificación , Péptidos/farmacología , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Nanopartículas/química , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacología , Antiinfecciosos/química
17.
J Appl Biomater Funct Mater ; 22: 22808000241245298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38733215

RESUMEN

In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.


Asunto(s)
Vendajes , Diabetes Mellitus Experimental , Gelatina , Cicatrización de Heridas , Animales , Gelatina/química , Cicatrización de Heridas/efectos de los fármacos , Ratas , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patología , Masculino , Humanos , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Andamios del Tejido/química
18.
J Nanobiotechnology ; 22(1): 246, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735970

RESUMEN

Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.


Asunto(s)
Inflamación , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ratones , Superóxido Dismutasa/metabolismo , Porosidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Masculino , Ferroptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Diabetes Mellitus Experimental , Nanopartículas/química , Humanos , Antioxidantes/farmacología , Nanocompuestos/química , Proteínas de la Membrana
19.
Int Wound J ; 21(5): e14861, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738669

RESUMEN

Effective fluid handling by wound dressings is crucial in the management of exuding wounds through maintaining a clean, moist environment, facilitating healing by removing excess exudate and promoting tissue regeneration. In this context, the availability of reliable and clinically relevant standardised testing methods for wound dressings are critical for informed decision making by clinicians, healthcare administrators, regulatory/reimbursement bodies and product developers. The widely used standard EN 13726 specifies the use of Solution A, an aqueous protein-free salt solution, for determining fluid-handling capacity (FHC). However, a simulated wound fluid (SWF) with a more complex composition, resembling the protein, salt, and buffer concentrations found in real-world clinical exudate, would provide a more clinically relevant dressing performance assessment. This study compared selected physicochemical parameters of Solution A, an alternative, novel simulated wound fluid (SWF A), and a benchmark reference serum-containing solution (SCS) simulating chronic wound exudate. Additionally, FHC values for eight advanced bordered and non-bordered foam dressings were determined for all three test fluids, following EN 13726. Our findings demonstrate a close resemblance between SWF A and SCS. This study highlights the critical importance of selecting a physiochemically appropriate test fluid for accurate FHC testing resulting in clinically meaningful evaluation of dressing performance.


Asunto(s)
Vendajes , Exudados y Transudados , Cicatrización de Heridas , Heridas y Lesiones , Humanos , Exudados y Transudados/química , Heridas y Lesiones/terapia
20.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740721

RESUMEN

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Asunto(s)
Antibacterianos , Vendajes , Quitosano , Escherichia coli , Hidrogeles , Microesferas , Pseudomonas aeruginosa , Staphylococcus aureus , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Infección de Heridas/prevención & control , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Catelicidinas , Pruebas de Sensibilidad Microbiana/métodos , Toxinas Bacterianas , Liberación de Fármacos , Movimiento Celular/efectos de los fármacos , Carbono/química , Biopelículas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA