Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Biochem Biophys Res Commun ; 702: 149628, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335704

RESUMEN

Atherosclerosis (AS) is considered to be one of the main pathogenic factors of coronary heart disease, cerebral infarction and peripheral vascular disease. Oxidative stress and inflammation run through the occurrence and development of atherosclerosis and related cardiovascular events. Muscone is a natural extract of deer musk and also the main physiological active substance of musk. This study investigated the impact of muscone on atherosclerosis. ApoE-/- mice were used to establised AS model and injected with low-dose (4 mg/kg/day) or high-dose (8 mg/kg/day) of muscone intraperitoneally for 4 weeks. Then aortic tissues were collected, and pathological sections of the aorta were prepared for oil red staining, HE and masson staining. The changes of MDA, SOD, VCAM-1, NF-κB, and TNF-α were observed by Western blotting or immunofluorescence staining. The results showed that high-dose muscone could effectively reduce the plaque area/aortic root area and relative atherosclerotic area, reduce the collagen composition in plaque tissue. In addition, we also found that high-dose muscone can effectively increase MDA level, reduce the level of SOD, and inhibit the expression of VCAM-1, NF-κB/p65, TNF-α in arterial plaques. Our results indicate that the administration of muscone has the benefit of inhibiting atherosclerosis. The potential mechanisms may be associated with antioxidant effect and inhibition of inflammatory reaction in arterial plaques. With the increasing understanding of the relationship between muscone and atherosclerosis, muscone has high potential value as a new drug to treat atherosclerosis.


Asunto(s)
Aterosclerosis , Cicloparafinas , Ciervos , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones Noqueados para ApoE , Ciervos/metabolismo , Aterosclerosis/metabolismo , Inflamación/patología , Aorta/metabolismo , Superóxido Dismutasa/metabolismo , Apolipoproteínas E/metabolismo
2.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38353975

RESUMEN

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Asunto(s)
Calcio , Ciervos , Ratones , Animales , Calcio/metabolismo , Ciervos/metabolismo , Proliferación Celular , Calcio de la Dieta/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Iones/metabolismo , Iones/farmacología , Osteoblastos
3.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191872

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Ratones , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Ciervos/metabolismo , Suelo
4.
J Wildl Dis ; 60(2): 496-501, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38287919

RESUMEN

As chronic wasting disease (CWD) continues to spread across North America, the relationship between CWD and host genetics has become of interest. In Rocky Mountain elk (Cervus elaphus nelsoni), one or two copies of a leucine allele at codon 132 of the prion protein gene (132L*) has been shown to prolong the incubation period of CWD. Our study examined the relationship between CWD epidemiology and codon 132 evolution in elk from Wyoming, USA, from 2011 to 2018. Using PCR and Sanger sequencing, we genotyped 997 elk and assessed the relationship between genotype and CWD prevalence estimated from surveillance data. Using logistic regression, we showed that each 1% increase in CWD prevalence is associated with a 9.6% increase in the odds that an elk would have at least one copy of leucine at codon 132. In some regions, however, 132L* variants were found in the absence of CWD, indicating that evolutionary and epidemiologic patterns can be heterogeneous across space and time. We also provide evidence that naturally occurring CWD is not rare in 132L* elk, which merits the study of shedding kinetics in 132L* elk and the influence of genotype on CWD strain diversity. The management implications of cervid adaptations to CWD are difficult to predict. Studies that investigate the degree to which evolutionary outcomes are shaped by host spatial structure can provide useful epidemiologic insight, which can in turn aid management by informing scale and extent of mitigation actions.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/epidemiología , Enfermedad Debilitante Crónica/genética , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Leucina/genética , Leucina/metabolismo , Codón/metabolismo , Ciervos/metabolismo
5.
Trends Microbiol ; 32(1): 79-92, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541811

RESUMEN

The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Ciervos , Enfermedades de los Perros , Animales , Perros , Gatos , Humanos , SARS-CoV-2/genética , Ciervos/metabolismo , Visón/metabolismo , Medición de Riesgo , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Unión Proteica
6.
PLoS Pathog ; 19(12): e1011815, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048370

RESUMEN

Prion agents occur in strains that are encoded by the structure of the misfolded prion protein (PrPSc). Prion strains can influence disease phenotype and the potential for interspecies transmission. Little is known about the potential transmission of prions between sheep and deer. Previously, the classical US scrapie isolate (No.13-7) had a 100% attack rate in white-tailed deer after oronasal challenge. The purpose of this study was to test the susceptibility of sheep to challenge with the scrapie agent after passage through white-tailed deer (WTD scrapie). Lambs of various prion protein genotypes were oronasally challenged with WTD scrapie. Sheep were euthanized and necropsied upon development of clinical signs or at the end of the experiment (72 months post-inoculation). Enzyme immunoassay, western blot, and immunohistochemistry demonstrated PrPSc in 4 of 10 sheep with the fastest incubation occurring in VRQ/VRQ sheep, which contrasts the original No.13-7 inoculum with a faster incubation in ARQ/ARQ sheep. Shorter incubation periods in VRQ/VRQ sheep than ARQ/ARQ sheep after passage through deer was suggestive of a phenotype change, so comparisons were made in ovinized mice and with sheep with known strains of classical sheep scrapie: No. 13-7 and x-124 (that has a more rapid incubation in VRQ/VRQ sheep). After mouse bioassay, the WTD scrapie and x-124 isolates have similar incubation periods and PrPSc conformational stability that are markedly different than the original No. 13-7 inoculum. Furthermore, brain tissues of sheep with WTD scrapie and x-124 scrapie have similar patterns of immunoreactivity that are distinct from sheep with No. 13-7 scrapie. Multiple lines of evidence suggest a phenotype switch when No. 13-7 scrapie prions are passaged through deer. This represents one example of interspecies transmission of prions resulting in the emergence or selection of new strain properties that could confound disease eradication and control efforts.


Asunto(s)
Ciervos , Priones , Scrapie , Ovinos , Animales , Ratones , Scrapie/metabolismo , Ciervos/metabolismo , Proteínas Priónicas/genética , Priones/metabolismo , Genotipo , Fenotipo
7.
Sci Rep ; 13(1): 7838, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188858

RESUMEN

Chronic wasting disease (CWD) is a fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting cervids. Circulating PrPCWD in blood may pose a risk for indirect transmission by way of hematophagous ectoparasites acting as mechanical vectors. Cervids can carry high tick infestations and exhibit allogrooming, a common tick defense strategy between conspecifics. Ingestion of ticks during allogrooming may expose naïve animals to CWD, if ticks harbor PrPCWD. This study investigates whether ticks can harbor transmission-relevant quantities of PrPCWD by combining experimental tick feeding trials and evaluation of ticks from free-ranging white-tailed deer (Odocoileus virginianus). Using the real-time quaking-induced conversion (RT-QuIC) assay, we show that black-legged ticks (Ixodes scapularis) fed PrPCWD-spiked blood using artificial membranes ingest and excrete PrPCWD. Combining results of RT-QuIC and protein misfolding cyclic amplification, we detected seeding activity from 6 of 15 (40%) pooled tick samples collected from wild CWD-infected white-tailed deer. Seeding activities in ticks were analogous to 10-1000 ng of CWD-positive retropharyngeal lymph node collected from deer upon which they were feeding. Estimates revealed a median infectious dose range of 0.3-42.4 per tick, suggesting that ticks can take up transmission-relevant amounts of PrPCWD and may pose a CWD risk to cervids.


Asunto(s)
Ciervos , Ixodes , Enfermedades Neurodegenerativas , Priones , Enfermedad Debilitante Crónica , Animales , Priones/metabolismo , Ciervos/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Ixodes/metabolismo
8.
Funct Integr Genomics ; 23(2): 156, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165199

RESUMEN

The capability of microRNAs (miRNAs) to regulate gene expression across species has opened new avenues for miRNA-based therapeutics. Here, we investigated the potential of PC-5p-1090 (miR-PC-1090), a miRNA found in deer antlers, to control the malignant phenotypes of hepatocellular carcinoma (HCC) cells. Using Cell Counting Kit-8 and transwell assays, we found that heterologous expression of miR-PC-1090 inhibited HCC cell proliferation, migration, and invasion. Bioinformatics analysis indicated that predicted miR-PC-1090 targets, including MARCKS, SMARCAD1, and SOX9, were significantly elevated in HCC tissues, and their high expressions were associated with poor overall survival of HCC patients. Moreover, mechanistic investigations revealed that miR-PC-1090 promoted the degradation of MARCKS and SMARCAD1 mRNAs and hindered the translation of SOX9 mRNA by recognizing their 3' untranslated regions. Subsequent loss-of-function and rescue experiments confirmed the involvement of MARCKS, SMARCAD1, and SOX9 in miR-PC-1090-suppressed HCC cell proliferation, migration, and invasion. Notably, MARCKS knockdown induced the downregulation of phosphorylated MARCKS and a corresponding upregulation of phosphorylated AKT in HCC. Conversely, miR-PC-1090 repressed MARCKS phosphorylation and effectively circumvented the activation of the PI3K/AKT pathway. Furthermore, miR-PC-1090 regulates the Wnt/ß-catenin pathway through SMARCAD1- and SOX9-mediated reduction of ß-catenin expression. Overall, our results illustrate the tumor-suppressive activity and molecular mechanism of antler-derived miR-PC-1090 in HCC cells, indicating its potential as a multiple-target agent for HCC treatment.


Asunto(s)
Cuernos de Venado , Carcinoma Hepatocelular , Ciervos , Neoplasias Hepáticas , MicroARNs , Animales , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Ciervos/genética , Ciervos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Humanos , Factor de Transcripción SOX9
9.
Food Funct ; 14(7): 3319-3331, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939833

RESUMEN

Mammary gland hyperplasia (MGH) is a common mammary disease whose main pathogenesis is the disruption of estradiol (E2) and progesterone (P) secretion, thereby causing overproliferation of mammary epithelial cells and mammary gland tissue hyperplasia. Deer antler base is a traditional Chinese medicine that has been used for many years to treat MGH. However, its pharmacological mechanism and pharmacodynamic material basis are unclear. In this study, we for the first time used the graded salting method to classify deer antler base protein (CNCP) as CNCP-A, CNCP-B, and CNCP-C and explored the pharmacological mechanism of the anti-MGH properties of CNCP. We found that CNCP could regulate the hormonal levels of E2, P, and follicle stimulating hormone (FSH) and improve the histopathological condition. The potential mechanism might be related to the recombinant C-Raf proto oncogene serine/threonine protein kinase/mitogen-activated protein/extracellular regulated protein kinase (Raf-1/MEK/ERK) signaling pathway. By upregulating the protein expression of the follicle stimulating hormone receptor (FSHR), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) inhibited the activation of the downstream Raf-1/MEK/ERK signaling pathway, which in turn inhibited the proliferation of mammary epithelial cells. We analyzed the physicochemical properties of CNCP-A, CNCP-B, and CNCP-C and obtained CNCP-C-I by column chromatographic purification of the best pharmacophore protein CNCP. Using high-performance liquid gel filtration chromatography (HPGFC), we determined the molecular weight of CNCP-C-I and identified it by high-performance liquid tandem mass spectrometry (LC-MS/MS) to obtain the first match for a high confidence protein KRT1. This study provides a theoretical basis for the development of effective traditional Chinese medicines with low toxicity levels for the prevention and treatment of mammary gland diseases.


Asunto(s)
Cuernos de Venado , Ciervos , Glándulas Mamarias Humanas , Animales , Humanos , Hiperplasia/metabolismo , Cromatografía Liquida , Glándulas Mamarias Humanas/metabolismo , Ciervos/metabolismo , Espectrometría de Masas en Tándem , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
10.
PeerJ ; 11: e14895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36919166

RESUMEN

Background: Corynebacterium silvaticum is a pathogenic, gram-positive bacterial species that causes caseous lymphadenitis in wild boars, domestic pigs and roe deer in Western Europe. It can affect animal production and cause zoonosis. Genome analysis has suggested that one strain from Portugal and one from Austria could probably produce the diphtheria toxin (DT), which inhibits protein synthesis and can cause death. Methods: To further investigate the species genetic diversity and probable production of DT by Portuguese strains, eight isolates from this country were sequenced and compared to 38 public ones. Results: Strains from Portugal are monophyletic, nearly identical, form a unique cluster and have 27 out of 36 known Corynebacterium virulence or niche factors. All of them lack a frameshift in the tox gene and were suggested to produce DT. A phylogenetic analysis shows that the species has diverged into two clades. Clade 1 is composed of strains that were suggested to have the ability to produce DT, represented by the monophyletic strains from Portugal and strain 05-13 from Austria. Clade 2 is composed of strains unable to produce DT due to a frameshifted tox gene. The second clade is represented by strains from Austria, Germany and Switzerland. Ten genome clusters were detected, in which strains from Germany are the most diverse. Strains from Portugal belong to an exclusive cluster. The pangenome has 2,961 proteins and is nearly closed (α = 0.968). Exclusive genes shared by clusters 1 and 2, and Portuguese strains are probably not related to disease manifestation as they share the same host but could play a role in their extra-host environmental adaptation. These results show the potential of the species to cause zoonosis, possibly diphtheria. The identified clusters, exclusively shaded genes, and exclusive STs identified in Portugal could be applied in the identification and epidemiology of the species.


Asunto(s)
Ciervos , Toxina Diftérica , Porcinos , Animales , Toxina Diftérica/genética , Portugal/epidemiología , Filogenia , Ciervos/metabolismo , Corynebacterium , Sus scrofa/metabolismo , Zoonosis
11.
J Wildl Dis ; 59(1): 61-70, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826398

RESUMEN

Elk (Cervus canadensis) were reintroduced to Tennessee, USA in the early 2000s, with limited reproductive monitoring since initial release. We assessed the efficacy of noninvasive sampling for determining pregnancy using invasive (capture) and noninvasive (fecal collection in the field) techniques at the North Cumberland Wildlife Management Area (NCWMA), Tennessee. We captured 20 female elk 2019-2020, used pregnancy-specific protein B (PSPB) in blood to determine pregnancy and compared results to fecal progesterone metabolite (FPM) concentrations using two commercially available enzyme immunoassay (EIA) kits. Based on PSPB concentrations, 8/11 and 3/4 of captured adult elk (≥2.5 yr of age) were pregnant in 2019 and 2020, respectively; no 1.5-yr-old elk were pregnant (n=5). Using the progesterone EIA kit, FPM concentrations were x̄=192.84±38.63 ng/g (95% CI, 96.48-289.20) for nonpregnant and x̄=536.17±74.98 ng/g (95% CI, 375.97-696.36) for pregnant captured females. For the progesterone metabolite kit, FPM concentrations were x̄=188.16±43.39 ng/g (95% confidence interval [CI], 76.63-299.69) for nonpregnant and x̄=693.52±126.52 ng/g (95% CI, 407.31-979.72) for pregnant captured females. From February to May 2019, we collected 357 fecal samples in 65 areas across 489.62 km2 of the NCWMA. Using extracted DNA and analysis of 15 microsatellites, we identified 62 unique individuals from 128 female fecal samples collected on the landscape. We categorized females from landscape-collected feces as nonpregnant (35.5-40.3%; Metabolite-EIA kits), undetermined (1.6-6.5%; Metabolite-EIA kits), or pregnant (62.9-53.2%; Metabolite-EIA kits) based on a 95% CI of captured female FPM concentrations, giving an overall pregnancy rate of 53.2% using the recommended EIA kit. The pregnancy rate in sexually mature females may be higher, as it was not possible to distinguish age classes of landscape-collected fecal samples; therefore, some may have been from younger age classes not expected to be pregnant. Analysis of FPM may be useful at a population level to detect pregnancy.


Asunto(s)
Ciervos , Pruebas de Embarazo , Embarazo , Animales , Femenino , Progesterona/análisis , Progesterona/metabolismo , Pruebas de Embarazo/veterinaria , Animales Salvajes , Ciervos/metabolismo , Heces/química
12.
Cell Tissue Res ; 392(1): 367-392, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764940

RESUMEN

Prion diseases are fatal infectious neurodegenerative disorders and prototypic conformational diseases, caused by the conformational conversion of the normal cellular prion protein (PrPC) into the pathological PrPSc isoform. Examples are scrapie in sheep and goat, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. There are no therapies available, and animal prion diseases like BSE and CWD can negatively affect the economy, ecology, animal health, and possibly human health. BSE is a confirmed threat to human health, and mounting evidence supports the zoonotic potential of CWD. CWD is continuously expanding in North America in numbers and distribution and was recently identified in Scandinavian countries. CWD is the only prion disease occurring both in wild and farmed animals, which, together with extensive shedding of infectivity into the environment, impedes containment strategies. There is currently a strong push to develop vaccines against CWD, including ones that can be used in wildlife. The immune system does not develop a bona fide immune response against prion infection, as PrPC and PrPSc share an identical protein primary structure, and prions seem not to represent a trigger for immune responses. This asks for alternative vaccine strategies, which focus on PrPC-directed self-antibodies or exposure of disease-specific structures and epitopes. Several groups have established a proof-of-concept that such vaccine candidates can induce some levels of protective immunity in cervid and rodent models without inducing unwanted side effects. This review will highlight the most recent developments and discuss progress and challenges remaining.


Asunto(s)
Ciervos , Encefalopatía Espongiforme Bovina , Enfermedades por Prión , Priones , Vacunas , Enfermedad Debilitante Crónica , Animales , Bovinos , Humanos , Ovinos , Objetivos , Enfermedades por Prión/prevención & control , Enfermedades por Prión/metabolismo , Priones/metabolismo , Encefalopatía Espongiforme Bovina/metabolismo , Enfermedad Debilitante Crónica/prevención & control , Enfermedad Debilitante Crónica/metabolismo , Ciervos/metabolismo , Cabras
13.
J Drugs Dermatol ; 22(1): 82-89, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607757

RESUMEN

BACKGROUND: Significant improvement in skin tone was reported after topical application of a facial cream (CALECIM® Professional Multi-Action Cream, CALECIM Cosmeceuticals, Singapore) containing conditioned media (CM) derived from Red Deer Umbilical Cord Lining Mesenchymal Stem Cell (RD-CLMSC) culture. This study investigates the paracrine effects of RD-CLMSC-CM on human dermal fibroblasts (HDF) to understand how it may increase skin turgor and elasticity. Skin aging is associated with lower levels of extracellular matrix components such as hyaluronic acid (HA) and elastin, resulting in poor skin turgor and elasticity. Histochemical staining followed by photocolorimetry demonstrated that RD-CLMSC-CM upregulated HDF expression of elastin by 56% and HA by 83% compared with DMEM/10% Fetal Calf Serum (FCS).To further quantify the effects of CM, a proliferation assay was used to assess HDF response to RD-CLMSC-CM exposure. Exposure to RD-CLMSC-CM resulted in the highest increase in HDF proliferation over DMEM/10% FCS (113%) followed by Human (H)-CLMSC-CM (112%), then Human Foreskin Fibroblast (FSF)-CM (16%).These experimental results demonstrate both the cross-species efficacy and lack of toxicity of RD-CLMSC-CM on HDF. These pre-clinical studies also suggest the clinical effects of RD-CLMSC-CM on skin turgor may be related to increased HA and elastin production by HDF, as well as enhanced proliferation. J Drugs Dermatol. 2023;21(1):82-89. doi:10.36849/JDD.6906.


Asunto(s)
Ciervos , Células Madre Mesenquimatosas , Humanos , Animales , Medios de Cultivo Condicionados , Elastina/metabolismo , Ciervos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Fibroblastos/metabolismo
14.
Cell Tissue Res ; 392(1): 63-80, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581386

RESUMEN

For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.


Asunto(s)
Ciervos , Enfermedades por Prión , Priones , Cricetinae , Animales , Humanos , Ovinos/genética , Priones/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Células Cultivadas , Línea Celular , Edición Génica , Ciervos/genética , Ciervos/metabolismo
15.
Genomics Proteomics Bioinformatics ; 21(1): 203-215, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35718271

RESUMEN

Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement by explaining the genome of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of the UGT family 2 subfamily B of UGT genes. The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.


Asunto(s)
Ciervos , Animales , Ciervos/genética , Ciervos/metabolismo , Taninos/metabolismo , Genoma , Genómica , Dieta
16.
J Infect Dis ; 227(12): 1386-1395, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36344485

RESUMEN

BACKGROUND: Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent. METHODS: We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6). RESULTS: All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats. CONCLUSIONS: WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult.


Asunto(s)
Ciervos , Enfermedades por Prión , Scrapie , Enfermedad Debilitante Crónica , Animales , Ovinos , Scrapie/metabolismo , Scrapie/patología , Ciervos/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/veterinaria , Proteínas PrPSc/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Cabras/metabolismo
17.
Vet Med Sci ; 9(1): 98-110, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36583959

RESUMEN

BACKGROUND: Castration is one of the most common surgical procedures performed in dogs. However, based on increasing evidence, male animals experience significant pain after castration. Astragalus polysaccharide (APS), one of the main bioactive components in A. membranaceus bunge, has been widely used as part of Fu-Zheng therapy to enhance natural defense mechanisms. INTRODUCTION: This study was carried out to determine the effects of supplementing different doses of Astragalus polysaccharide (APS; control, 0 mg/kg; APSL, 400 mg/kg; and APSH, 800 mg/kg) for 8 weeks on the haematology and serum chemistry profiles, immune response, and oxidative stress status in weanling beagle dogs. METHODS: After adapting to the experimental environment for 1 week, 18 male beagle dogs (Sichuan Institute of Musk Deer Breeding, China; average initial weight, 3.80 ± 0.43 g; age, 3-month-old) were randomly allotted to diets supplemented with three doses of APS (Control, 0 mg/kg; low, 400 mg/kg; and high, 800 mg/kg), referred to as control, APSL, and APSH, respectively; six dogs were assigned to each treatment. The dogs were fed the respective diets twice daily at 08:30 and 16:30 h in sufficient quantity to supply the metabolizable energy requirements for 8 weeks. On day 43 (19 weeks old), the dogs were castrated. On days 42 (prior to castration, 19 weeks old), 50 (day 7 after castration, 20 weeks old), and 57 (day 14 after castration, 21 weeks old) to measure the haematology, blood chemistry, immune response, and oxidative stress status parameters. RESULTS: Based on our findings, the APSH diet decreased weight gain and increased the feed to gain ratio in dogs (P < 0.05). At 14 days after castration, the wound was almost closed, slightly swollen, dry, and clean in the groups supplemented with APS. In addition, optimal APS supplementation was found to decrease erythrocyte count (RBC), haematocrit (HCT), alkaline phosphatase (ALP), alanine aminotransferase (ALT), C-reactive protein (CRP), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) levels, and cortisol and protein carbonyl (PC) concentrations (P < 0.05). Moreover, the mean corpuscular haemoglobin (MCH) and platelet (PLT) levels, interleukin 10 (IL-10) and glutathione (GSH) content, and Cu/Zn superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (Se-GPx) activities were increased in the APS supplemented groups (P < 0.05) CONCLUSION: This study demonstrated that supplementing weanling beagle dogs with optimum APS could positively affect wound healing by improving their haematological profile (decreased RBC and HCT content, increased MCH and PLT levels), serum biochemical parameters (decreased ALP and ALT content), immune status (decreased CRP, IL-1ß, and TNF-α levels; increased IL-10 content), and antioxidant defense (decreased cortisol and PC content; increased GSH content, and SOD1, CAT, and Se-GPx activities). However, the detailed mechanism whereby APS regulates these changes requires further investigation. In addition, the results of this study suggest that 400 mg/kg diet is the optimum APS dose for beagle dogs.


Asunto(s)
Ciervos , Hematología , Animales , Perros , Masculino , Castración/veterinaria , Ciervos/metabolismo , Suplementos Dietéticos , Glutatión/metabolismo , Hidrocortisona , Inmunidad , Interleucina-10/metabolismo , Estrés Oxidativo , Polisacáridos/farmacología , Superóxido Dismutasa-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
FASEB J ; 37(2): e22742, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583723

RESUMEN

The Chinese forest musk deer (FMD; Moschus berezovskii) is an endangered artiodactyl mammal. Musk secreted by the musk gland of male has extremely high economic and medicinal value. However, the molecular and cellular characteristics of the musk gland have not been studied. Here, we investigated the diversity and transcriptional composition of musk gland cell types and the effect of cell type-specific chromatin accessibility on gene expression using single-nucleus RNA sequencing (snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq) association analysis. Based on uniform manifold approximation and projection (UMAP) analysis, we identified 13 cell types from the musk gland, which included two different acinar cells (cluster 0 and cluster 10). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that many pathways related to musk secretion were enriched in acinar cells. Our analysis also revealed acinar cell core transcription factors and core target genes, and further constructed acinar cell-specific regulatory networks. In cluster 0, 11 core target genes (Nedd4l, Adcy9, Akr1c1, Vapb, Me1, Acsl1, Acss3, Srd5a1, Scnn1a, Acadm, and Nceh1) possibly related to musk secretion were regulated by 24 core transcription factors (SP3, NFIC, NR6A1, EHF, RUNX1, TFAP2A, RREB1, GRHL2, NFIB, ELF1, MAX, KLF5, REL, HES1, POU2F3, TFDP1, NR2C1, ATF7, MEIS1, NR4A2, NFIA, PBX1, ZNF652, and NFKB1). In cluster 10, four core target genes (Akr1c1, Pcca, Atp1b1, and Sgk1) possibly related to musk secretion were regulated by 10 core transcription factors (BARX2, EHF, PBX1, RUNX1, NFIB, FOXP1, KLF3, KLF6, ETV6, and NR3C2). Moreover, the credibility of snRNA-seq and snATAC-seq data was verified by fluorescence in situ hybridization and immunohistochemistry. Finally, cell communication analysis demonstrated that the two types of acinar cells mainly have communications in musk secretion-related processes. In conclusion, we provided important insights and invaluable resources for the molecular and cellular characteristics of the musk gland, which will lay a foundation for the study of musk secretion mechanism in the future.


Asunto(s)
Ciervos , Masculino , Animales , Ciervos/genética , Ciervos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , ARN/metabolismo , Hibridación Fluorescente in Situ , Bosques , ARN Nuclear Pequeño/metabolismo
19.
Gen Comp Endocrinol ; 330: 114141, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272446

RESUMEN

Living in variable and unpredictable environments, organisms face recurrent stressful situations. The endocrine stress response, which includes the secretion of glucocorticoids, helps organisms to cope with these perturbations. Although short-term elevations of glucocorticoid levels are often associated with immediate beneficial consequences for individuals, long-term glucocorticoid elevation can compromise key physiological functions such as immunity. While laboratory works highlighted the immunosuppressive effect of long-term elevated glucocorticoids, it remains largely unknown, especially in wild animals, whether this relationship is modulated by individual and environmental characteristics. In this study, we explored the co-variation between integrated cortisol levels, assessed non-invasively using faecal cortisol metabolites (FCMs), and 12 constitutive indices of innate, inflammatory, and adaptive immune functions, in wild roe deer living in three populations with previously known contrasting environmental conditions. Using longitudinal data on 564 individuals, we further investigated whether age and spatio-temporal variations in the quantity and quality of food resources modulate the relationship between FCMs and immunity. Negative covariation with glucocorticoids was evident only for innate and inflammatory markers of immunity, while adaptive immunity appeared to be positively or not linked to glucocorticoids. In addition, the negative covariations were generally stronger in individuals facing harsh environmental constraints and in old individuals. Therefore, our results highlight the importance of measuring multiple immune markers of immunity in individuals from contrasted environments to unravel the complex relationships between glucocorticoids and immunity in wild animals. Our results also help explain conflicting results found in the literature and could improve our understanding of the link between elevated glucocorticoid levels and disease spread, and its consequences on population dynamics.


Asunto(s)
Ciervos , Animales , Ciervos/metabolismo , Animales Salvajes/metabolismo , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Inmunidad Adaptativa
20.
Cell Tissue Res ; 392(1): 135-148, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36201049

RESUMEN

Chronic wasting disease (CWD) strains present a novel challenge to defining and mitigating this contagious prion disease of deer, elk, moose, and reindeer. Similar to strains of other prion diseases (bovine spongiform encephalopathy, sheep scrapie), CWD strains can affect biochemical and neuropathological properties of the infectious agent, and importantly interspecies transmission. To date, ten CWD strains have been characterized. The expanding range of CWD in North America and its presence in South Korea as well as Scandinavian countries will potentially result in millions of cervids infected with CWD; thus, novel strains will continue to emerge. In this review, we will summarize the characteristics of known CWD strains and describe the impact of prion protein gene polymorphisms on the generation of strains. We will also discuss the evidence that individual cervids can harbor more than one CWD strain, complicating strain analysis, and affecting selection and adaptation of strains in new hosts.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Bovinos , Animales , Ovinos , Enfermedad Debilitante Crónica/genética , Enfermedad Debilitante Crónica/metabolismo , Ciervos/metabolismo , Proteínas Priónicas/metabolismo , Priones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA