Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Med Inform Decis Mak ; 24(1): 134, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789985

RESUMEN

BACKGROUND: There are approximately 8,000 different rare diseases that affect roughly 400 million people worldwide. Many of them suffer from delayed diagnosis. Ciliopathies are rare monogenic disorders characterized by a significant phenotypic and genetic heterogeneity that raises an important challenge for clinical diagnosis. Diagnosis support systems (DSS) applied to electronic health record (EHR) data may help identify undiagnosed patients, which is of paramount importance to improve patients' care. Our objective was to evaluate three online-accessible rare disease DSSs using phenotypes derived from EHRs for the diagnosis of ciliopathies. METHODS: Two datasets of ciliopathy cases, either proven or suspected, and two datasets of controls were used to evaluate the DSSs. Patient phenotypes were automatically extracted from their EHRs and converted to Human Phenotype Ontology terms. We tested the ability of the DSSs to diagnose cases in contrast to controls based on Orphanet ontology. RESULTS: A total of 79 cases and 38 controls were selected. Performances of the DSSs on ciliopathy real world data (best DSS with area under the ROC curve = 0.72) were not as good as published performances on the test set used in the DSS development phase. None of these systems obtained results which could be described as "expert-level". Patients with multisystemic symptoms were generally easier to diagnose than patients with isolated symptoms. Diseases easily confused with ciliopathy generally affected multiple organs and had overlapping phenotypes. Four challenges need to be considered to improve the performances: to make the DSSs interoperable with EHR systems, to validate the performances in real-life settings, to deal with data quality, and to leverage methods and resources for rare and complex diseases. CONCLUSION: Our study provides insights into the complexities of diagnosing highly heterogenous rare diseases and offers lessons derived from evaluation existing DSSs in real-world settings. These insights are not only beneficial for ciliopathy diagnosis but also hold relevance for the enhancement of DSS for various complex rare disorders, by guiding the development of more clinically relevant rare disease DSSs, that could support early diagnosis and finally make more patients eligible for treatment.


Asunto(s)
Ciliopatías , Registros Electrónicos de Salud , Enfermedades Raras , Humanos , Ciliopatías/diagnóstico , Enfermedades Raras/diagnóstico , Sistemas de Apoyo a Decisiones Clínicas , Fenotipo
2.
Orphanet J Rare Dis ; 19(1): 55, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336713

RESUMEN

BACKGROUND: Rare diseases affect approximately 400 million people worldwide. Many of them suffer from delayed diagnosis. Among them, NPHP1-related renal ciliopathies need to be diagnosed as early as possible as potential treatments have been recently investigated with promising results. Our objective was to develop a supervised machine learning pipeline for the detection of NPHP1 ciliopathy patients from a large number of nephrology patients using electronic health records (EHRs). METHODS AND RESULTS: We designed a pipeline combining a phenotyping module re-using unstructured EHR data, a semantic similarity module to address the phenotype dependence, a feature selection step to deal with high dimensionality, an undersampling step to address the class imbalance, and a classification step with multiple train-test split for the small number of rare cases. The pipeline was applied to thirty NPHP1 patients and 7231 controls and achieved good performances (sensitivity 86% with specificity 90%). A qualitative review of the EHRs of 40 misclassified controls showed that 25% had phenotypes belonging to the ciliopathy spectrum, which demonstrates the ability of our system to detect patients with similar conditions. CONCLUSIONS: Our pipeline reached very encouraging performance scores for pre-diagnosing ciliopathy patients. The identified patients could then undergo genetic testing. The same data-driven approach can be adapted to other rare diseases facing underdiagnosis challenges.


Asunto(s)
Ciliopatías , Enfermedades Raras , Humanos , Registros Electrónicos de Salud , Semántica , Aprendizaje Automático Supervisado , Ciliopatías/diagnóstico , Ciliopatías/genética , Algoritmos
3.
Genes (Basel) ; 14(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37628605

RESUMEN

Here we present a patient with a cranioectodermal phenotype associated with pathogenic variants in the IFT140 gene. Most frequently, pathogenic variants in IFT140 correspond to the phenotype of Mainzer-Saldino syndrome. Only four patients have previously been described with this cranioectodermal phenotype and variants in IFT140. In comparison to other IFT140-cranioectodermal patients, our proband had similar skeletal features among with early onset end-stage renal failure that required kidney transplantation but did not have common ophthalmological features such as retinopathy, optic nerve atrophy, or nystagmus. Following exome sequencing, a splicing variant and exons 27-30 tandem duplication were suspected and further validated. The two other patients with Mainzer-Saldino syndrome that we described displayed a typical clinical picture but a special diagnostic journey. In both cases, at first only one pathogenic variant was detected following panel or exome NGS sequencing. Further WGS was performed for one of them where tandem duplication was found. Screening the third patient for the same tandem duplication was successful and revealed the presence of this duplication. Thus, we suggest that the description of the clinical feature polymorphism in a rare IFT140-cranioectodermal phenotype is extremely important for providing genetic counseling for families, as well as the formation of the correct diagnostic path for patients with a variant in IFT140.


Asunto(s)
Ciliopatías , Craneosinostosis , Humanos , Craneosinostosis/diagnóstico , Craneosinostosis/genética , Ciliopatías/diagnóstico , Ciliopatías/genética , Fenotipo , Proteínas Portadoras
4.
Am J Med Genet A ; 191(5): 1282-1292, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36826837

RESUMEN

Exome sequencing is a powerful tool in prenatal and postnatal genetics and can help identify novel candidate genes critical to human development. We describe seven unpublished probands with rare likely pathogenic variants or variants of uncertain significance that segregate with recessive disease in TBC1D32, including four fetal probands in three unrelated pedigrees and three pediatric probands in unrelated pedigrees. We also report clinical comparisons with seven previously published patients. Index probands were identified through an ongoing prenatal exome sequencing study and through an online data sharing platform (Gene Matcher™). A literature review was also completed. TBC1D32 is involved in the development and function of cilia and is expressed in the developing hypothalamus and pituitary gland. We provide additional data to expand the phenotype correlated with TBC1D32 variants, including a severe prenatal phenotype associated with life-limiting congenital anomalies.


Asunto(s)
Ciliopatías , Embarazo , Femenino , Humanos , Niño , Fenotipo , Ciliopatías/diagnóstico , Ciliopatías/genética , Linaje , Proteínas Adaptadoras Transductoras de Señales
5.
Eur J Hum Genet ; 31(4): 479-484, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599940

RESUMEN

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.


Asunto(s)
Ciliopatías , Dineínas Citoplasmáticas , Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Ciliopatías/diagnóstico , Ciliopatías/genética , Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutación , Polidactilia/genética
6.
Eur J Hum Genet ; 31(8): 953-961, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36550190

RESUMEN

Next generation sequencing (NGS) can detect carrier status for rare recessive disorders, informing couples about their reproductive risk. The recent ACMG recommendations support offering NGS-based carrier screening (NGS-CS) in an ethnic and population-neutral manner for all genes that have a carrier frequency >1/200 (based on GnomAD). To evaluate current challenges for NGS-CS, we focused on the ciliopathies, a well-studied group of rare recessive disorders. We analyzed 118 ciliopathy genes by whole exome sequencing in ~400 healthy local individuals and ~1000 individuals from the UK1958-birth cohort. We found 20% of healthy individuals (1% of couples) to be carriers of reportable variants in a ciliopathy gene, while 50% (4% of couples) carry variants of uncertain significance (VUS). This large proportion of VUS is partly explained by the limited utility of the ACMG/AMP variant-interpretation criteria in healthy individuals, where phenotypic match or segregation criteria cannot be used. Most missense variants are thus classified as VUS and not reported, which reduces the negative predictive value of the screening test. We show how gene-specific variation patterns and structural protein information can help prioritize variants most likely to be disease-causing, for (future) functional assays. Even when considering only strictly pathogenic variants, the observed carrier frequency is substantially higher than expected based on estimated disease prevalence, challenging the 1/200 carrier frequency cut-off proposed for choice of genes to screen. Given the challenges linked to variant interpretation in healthy individuals and the uncertainties about true carrier frequencies, genetic counseling must clearly disclose these limitations of NGS-CS.


Asunto(s)
Ciliopatías , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Asesoramiento Genético , Secuenciación del Exoma , Ciliopatías/diagnóstico , Ciliopatías/genética , Tamización de Portadores Genéticos
7.
Clin Neurol Neurosurg ; 224: 107560, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580738

RESUMEN

OBJECTIVE: Joubert syndrome is a neurodevelopmental disorder with a distinctive hindbrain malformation called molar tooth sign, causing motor and cognitive impairments. More than 40 genes have been associated with Joubert syndrome. We aim to describe a group of Joubert syndrome patients clinically and genetically emphasizing organ involvement. METHODS: We retrospectively collected clinical information and molecular diagnosis data of 22 patients with Joubert syndrome from multiple facilities. Clinical exome or whole-exome sequencing were performed to identify causal variations in genes. RESULTS: The most common variants were in the CPLANE1, CEP290, and TMEM67 genes, and other causative genes were AHI1, ARMC9, CEP41, CSPP1, HYLS1, KATNIP, KIAA0586, KIF7, RPGRIP1L, including some previously unreported variants in these genes. Multi-systemic organ involvement was observed in nine (40%) patients, with the eye being the most common, including Leber's congenital amaurosis, ptosis, and optic nerve coloboma. Portal hypertension and esophageal varices as liver and polycystic kidney disease and nephronophthisis as kidney involvement was encountered in our patients. The HYLS1 gene, which commonly causes hydrolethalus syndrome 1, was also associated with Joubert syndrome in one of our patients. A mild phenotype with hypophyseal hormone deficiencies without the classical molar tooth sign was observed with compound heterozygous and likely pathogenic variants not reported before in the KATNIP gene. CONCLUSION: Some rare variants that display prominent genetic heterogeneity with variable severity are first reported in our patients. In our study of 22 Joubert syndrome patients, CPLANE1 is the most affected gene, and Joubert syndrome as a ciliopathy is possible without a classical molar tooth sign, like in the KATNIP gene-affected patients.


Asunto(s)
Anomalías Múltiples , Ciliopatías , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Cerebelo/anomalías , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Retina/patología , Estudios Retrospectivos , Mutación , Ciliopatías/diagnóstico , Ciliopatías/genética , Ciliopatías/patología , Proteínas/genética , Antígenos de Neoplasias , Proteínas del Citoesqueleto/genética , Proteínas de Ciclo Celular/genética
8.
Ann Hum Genet ; 86(6): 291-296, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36039988

RESUMEN

Orofaciodigital syndrome (OFD) is clinically heterogeneous and is characterized by abnormalities in the oral cavity, facial features, digits, and central nervous system. At least 18 subtypes of the condition have been described in the literature. OFD is caused by variants in several genes with overlapping phenotypes. We studied a consanguineous Pakistani family with two affected siblings with an atypical form of OFD type 4 (OFD4). In addition to the typical features of OFD4 that include limb defects and growth retardation, the siblings displayed rare features of scaphocephaly and seizures. Exome sequencing analysis revealed a novel homozygous splice site variant c.257-1G>A in TCTN3 that segregated with disease. This homozygous splice site variant in TCTN3 is most likely the underlying cause of the atypical form of OFD4 observed in this family. Our results contribute to the phenotypic spectrum of TCTN3 associated ciliopathies and will facilitate better clinical diagnosis.


Asunto(s)
Ciliopatías , Síndromes Orofaciodigitales , Humanos , Síndromes Orofaciodigitales/genética , Ciliopatías/diagnóstico , Mutación , Homocigoto , Linaje
9.
Br J Biomed Sci ; 79: 10221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35996505

RESUMEN

The definition of a rare disease in the European Union describes genetic disorders that affect less than 1 in 2,000 people per individual disease; collectively these numbers amount to millions of individuals globally, who usually manifest a rare disease early on in life. At present, there are at least 8,000 known rare conditions, of which only some are clearly molecularly defined. Over the recent years, the use of genetic diagnosis is gaining ground into informing clinical practice, particularly in the field of rare diseases, where diagnosis is difficult. To demonstrate the complexity of genetic diagnosis for rare diseases, we focus on Ciliopathies as an example of a group of rare diseases where an accurate diagnosis has proven a challenge and novel practices driven by scientists are needed to help bridge the gap between clinical and molecular diagnosis. Current diagnostic difficulties lie with the vast multitude of genes associated with Ciliopathies and trouble in distinguishing between Ciliopathies presenting with similar phenotypes. Moreover, Ciliopathies such as Autosomal Recessive Polycystic Kidney Disease (ARPKD) and Meckel-Gruber syndrome (MKS) present with early phenotypes and may require the analysis of samples from foetuses with a suspected Ciliopathy. Advancements in Next Generation Sequencing (NGS) have now enabled assessing a larger number of target genes, to ensure an accurate diagnosis. The aim of this review is to provide an overview of current diagnostic techniques relevant to Ciliopathies and discuss the applications and limitations associated with these techniques.


Asunto(s)
Trastornos de la Motilidad Ciliar , Ciliopatías , Enfermedades Renales Poliquísticas , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/genética , Ciliopatías/diagnóstico , Ciliopatías/genética , Humanos , Patología Molecular , Enfermedades Renales Poliquísticas/diagnóstico , Enfermedades Renales Poliquísticas/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
10.
J Med Genet ; 59(12): 1151-1164, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35764379

RESUMEN

BACKGROUND: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS: We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION: Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.


Asunto(s)
Síndrome de Bardet-Biedl , Ciliopatías , Humanos , Antígenos de Neoplasias , Síndrome de Bardet-Biedl/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Ciliopatías/diagnóstico , Ciliopatías/genética , Proteínas del Citoesqueleto/genética , Genotipo , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Medicina Estatal , Genoma Humano
11.
Am J Med Genet A ; 188(7): 2242-2245, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35362211

RESUMEN

Ciliopathies are a group of genetic disorders caused by ciliary dysfunction. Thirty-five distinct multi-organ phenotypes have been recognized, with 187 genes associated. We performed a literature review of pancreatic involvement in ciliopathies and found that pancreatic disease is an uncommon phenotype described in only a handful of these genetic disorders. We present a case report of a pediatric patient with WDR19-related ciliopathy whose degree of pancreatic disease exceeds what has previously been reported in the literature for WDR19-related ciliopathies. WDR19 is one member of the nephronophthisis (NPHP)-related ciliopathy gene family and encodes an intra-flagellar transport protein (IFT144). Our patient presented with restrictive and obstructive lung disease, short rib thoracic dysplasia, end-stage renal disease (ESRD), developmental delay, hepatic fibrosis, and severe recurrent pancreatitis. Whole-exome sequencing (GeneDx) showed two likely pathogenic WDR19 variants in trans (maternally inherited: c.742G > A, p.G248S; paternally inherited: c.617 T > C, p.L206P). Among WDR19-related ciliopathies, pancreatic involvement is rarely reported and there have been no cases of severe, recurrent pancreatitis. Through this case report and literature review we hope to emphasize that pancreatic involvement is a rare yet important clinical phenotype to recognize in ciliopathies, especially in WDR19-related ciliopathies.


Asunto(s)
Ciliopatías , Enfermedades Pancreáticas , Pancreatitis , Niño , Ciliopatías/diagnóstico , Ciliopatías/genética , Proteínas del Citoesqueleto/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Enfermedades Pancreáticas/diagnóstico , Enfermedades Pancreáticas/genética , Fenotipo
12.
J Hum Genet ; 67(7): 427-440, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35140360

RESUMEN

Nephronophthisis is an autosomal-recessive kidney disease that is caused by abnormalities in primary cilia. Nephronophthisis-related ciliopathies (NPHP-RCs) are a common cause of end-stage kidney disease (ESKD) in children and adolescents. NPHP-RCs are often accompanied by extrarenal manifestations, including intellectual disability, retinitis pigmentosa, or polydactyly. Although more than 100 causative genes have been identified, its diagnosis is difficult because the clinical features of each mutation often overlap. From September 2010 to August 2021, we performed genetic analysis, including next-generation sequencing (NGS), in 574 probands with kidney dysfunction and retrospectively studied cases genetically diagnosed with NPHP-RCs. RESULTS: We detected mutations related to NPHP-RCs in 93 patients from 83 families. Members of 60 families were diagnosed using NGS, and the mutations and the corresponding number of families are as follows: NPHP1 (24), NPHP3 (10), OFD1 (7), WDR35 (5), SDCCAG8 (4), BBS10 (3), TMEM67 (3), WDR19 (3), BBS1 (2), BBS2 (2), IFT122 (2), IFT140 (2), IQCB1 (2), MKKS (2), SCLT1 (2), TTC21B (2), ALMS1 (1), ANKS6 (1), BBS4 (1), BBS12 (1), CC2D2A (1), DYNC2H1 (1), IFT172 (1), and MAPKBP1 (1). A total of 39 cases (41.9%) progressed to ESKD at the time of genetic analysis, whereas 58 cases (62.3%) showed extrarenal manifestations, the most common being developmental delay, intellectual disability, and autism spectrum disorder in 44 patients. Comprehensive genetic analysis using NGS is useful for diagnosing patients with NPHP-RCs.


Asunto(s)
Trastorno del Espectro Autista , Ciliopatías , Discapacidad Intelectual , Enfermedades Renales Quísticas , Adolescente , Trastorno del Espectro Autista/genética , Niño , Ciliopatías/diagnóstico , Ciliopatías/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/genética , Japón , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Mutación , Estudios Retrospectivos
13.
J Med Genet ; 59(8): 737-747, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34716235

RESUMEN

BACKGROUND: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS: Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS: We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION: These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.


Asunto(s)
Anomalías Múltiples , Ciliopatías , Anomalías del Ojo , Enfermedades Renales Quísticas , Anomalías Múltiples/genética , Ciliopatías/diagnóstico , Ciliopatías/genética , Ciliopatías/patología , Anomalías del Ojo/genética , Humanos , Enfermedades Renales Quísticas/genética , Fenotipo , Medicina Estatal
14.
Fetal Pediatr Pathol ; 41(6): 1041-1051, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34821546

RESUMEN

Background: Antenatally detected occipital encephalocele and polycystic kidneys are a common presentation of ciliopathies like Joubert syndrome and Meckel Gruber syndrome which have considerable genetic and phenotypic overlap. Case reports: We describe 3 cases of antenatally diagnosed occipital encephalocele and enlarged kidneys with fetal autopsy, histopathology & exome sequencing results. A novel nonsense variant in the CEP290 gene was reported in first case (Meckel syndrome). The second case shows the importance of fetal exome where the parents were carriers for 2 ciliopathy genes (TMEM138 & SDCCAG8). Diagnosis in this case was confirmed by fetal exome sequencing (Joubert syndrome). Multiexon deletion in TMEM67 and KIF14 present in trans was identified in the third case (Meckel syndrome), likely resulting in digenic inheritance. Conclusion: We report 2 cases of Meckel syndrome with a novel variant and multiexon deletion, and 1 case of Joubert syndrome which depicts the limitations of preconceptional carrier screening in ciliopathies due to overlapping phenotypes.


Asunto(s)
Anomalías Múltiples , Trastornos de la Motilidad Ciliar , Ciliopatías , Anomalías del Ojo , Enfermedades Renales Poliquísticas , Humanos , Encefalocele/diagnóstico , Encefalocele/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Cerebelo/patología , Retina/patología , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Enfermedades Renales Poliquísticas/diagnóstico , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Ciliopatías/diagnóstico , Ciliopatías/genética , Ciliopatías/patología , Mutación , Antígenos de Neoplasias , Proteínas del Citoesqueleto/genética , Proteínas de Ciclo Celular/genética
15.
Genes (Basel) ; 12(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34828254

RESUMEN

Biallelic truncating FAM149B1 variants result in cilia dysfunction and have been reported in four infants with Joubert syndrome and orofaciodigital syndrome type VI, respectively. We report here on three adult siblings, 18 to 40 years of age, homozygous for the known FAM149B1 c.354_357delinsCACTC (p.Gln118Hisfs*20) variant. Detailed clinical examinations were performed including ocular and gait analyses, skeletal- and neuroimaging. All three patients presented with neurological and oculomotor symptoms since birth and mild skeletal dysplasia in infancy resulting in characteristic gait abnormalities. We document mild skeletal dysplasia, abnormal gait with increased hip rotation and increased external foot rotation, ataxia, variable polydactyly, ocular Duane syndrome, progressive ophthalmoplegia, nystagmus, situs inversus of the retinal vessels, olfactory bulb aplasia, and corpus callosal dysgenesis as novel features in FAM149B1-ciliopathy. We show that intellectual disability is mild to moderate and retinal, renal and liver function is normal in these affected adults. Our study thus expands the FAM149B1-related Joubert syndrome to a mainly neurological and skeletal ciliopathy phenotype with predominant oculomotor dysfunction but otherwise stable outcome in adults. Diagnosis of FAM149B1-related disorder was impeded by segregation of multiple neurogenetic disorders in the same family, highlighting the importance of extended clinical and genetic studies in families with complex phenotypes.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Ciliopatías/genética , Proteínas del Citoesqueleto/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Malformaciones del Sistema Nervioso/genética , Retina/anomalías , Anomalías Múltiples/diagnóstico , Adolescente , Adulto , Ciliopatías/diagnóstico , Consanguinidad , Síndrome de Retracción de Duane/complicaciones , Síndrome de Retracción de Duane/diagnóstico , Síndrome de Retracción de Duane/genética , Anomalías del Ojo/complicaciones , Femenino , Humanos , Enfermedades Renales Quísticas/complicaciones , Masculino , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/diagnóstico , Fenotipo , Arabia Saudita , Hermanos , Adulto Joven
16.
F1000Res ; 10: 207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354814

RESUMEN

Background: Whole exome sequencing (WES) is becoming part of routine clinical and diagnostic practice. In the investigation of inherited cystic kidney disease and renal ciliopathy syndromes, WES has been extensively applied in research studies as well as for diagnostic utility to detect various novel genes and variants. The yield of WES critically depends on the characteristics of the patient population. Methods: In this study, we selected 8 unrelated Omani children, presenting with renal ciliopathy syndromes with a positive family history and originating from consanguineous families. We performed WES in affected children to determine the genetic cause of disease and to test the yield of this approach, coupled with homozygosity mapping, in this highly selected population. DNA library construction and WES was carried out using SureSelect Human All Exon V6 Enrichment Kit and Illumina HiSeq platform. For variants filtering and annotation Qiagen Variant Ingenuity tool was used. Nexus copy number software from BioDiscovery was used for evaluation of copy number variants and whole gene deletions. Patient and parental DNA was used to confirm mutations and the segregation of alleles using Sanger sequencing. Results: Genetic analysis identified 4 potential causative homozygous variants each confirmed by Sanger sequencing in 4 clinically relevant ciliopathy syndrome genes, ( TMEM231, TMEM138, WDR19 and BBS9), leading to an overall diagnostic yield of 50%. Conclusions: WES coupled with homozygosity mapping provided a diagnostic yield of 50% in this selected population. This genetic approach needs to be embedded into clinical practise to allow confirmation of clinical diagnosis, to inform genetic screening as well as family planning decisions. Half of the patients remain without diagnosis highlighting the technical and interpretational hurdles that need to be overcome in the future.


Asunto(s)
Ciliopatías , Exoma , Niño , Ciliopatías/diagnóstico , Ciliopatías/genética , Consanguinidad , Exoma/genética , Humanos , Síndrome , Secuenciación del Exoma
17.
Biochem Soc Trans ; 49(3): 1205-1220, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33960378

RESUMEN

Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.


Asunto(s)
Cilios/genética , Ciliopatías/genética , Predisposición Genética a la Enfermedad/genética , Riñón/metabolismo , Mutación , Enfermedades Renales Poliquísticas/genética , Animales , Cilios/metabolismo , Cilios/patología , Ciliopatías/diagnóstico , Ciliopatías/metabolismo , Genotipo , Humanos , Riñón/patología , Fenotipo , Enfermedades Renales Poliquísticas/diagnóstico , Enfermedades Renales Poliquísticas/metabolismo
18.
Eur J Hum Genet ; 29(11): 1677-1689, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34040173

RESUMEN

Skeletal ciliopathies are a group of disorders caused by dysfunction of the cilium, a small signaling organelle present on nearly every vertebrate cell. This group of disorders is marked by genetic and clinical heterogeneity, which complicates accurate diagnosis. In this study, we developed a robust, standardized immunofluorescence approach to accurately diagnose a subset of these disorders. Hereto we determined and compared the cilium phenotype of healthy individuals to patients from three different ciliopathy subgroups, using skin-derived fibroblasts. The cilium phenotype assay consists of three parameters; (1) ciliogenesis, based on the presence or absence of cilium markers, (2) cilium length, measured by the combined signal of an axonemal and a cilium membrane marker, and (3) retrograde intraflagellar transport (IFT), quantified by the area of the ciliary tip. Analysis of the cilium phenotypic data yielded comparable and reproducible results and in addition, displayed identifiable clusters for healthy individuals and two ciliopathy subgroups, i.e. ATD and CED. Our results illustrate that standardized analysis of the cilium phenotype can be used to discriminate between ciliopathy subgroups. Therefore, we believe that standardization of functional assays analyzing cilium phenotypic data can provide additional proof for conclusive diagnosis of ciliopathies, which is essential for routine diagnostic care.


Asunto(s)
Ciliopatías/diagnóstico , Pruebas Genéticas/métodos , Células Cultivadas , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Fibroblastos/metabolismo , Heterogeneidad Genética , Pruebas Genéticas/normas , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Fenotipo , Sensibilidad y Especificidad
19.
Respir Res ; 22(1): 74, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639936

RESUMEN

The pathophysiology of chronic obstructive pulmonary disease (COPD) relies on airway remodelling and inflammation. Alterations of mucociliary clearance are a major hallmark of COPD caused by structural and functional cilia abnormalities. Using transcriptomic databases of whole lung tissues and isolated small airway epithelial cells (SAEC), we comparatively analysed cilia-associated and ciliopathy-associated gene signatures from a set of 495 genes in 7 datasets including 538 non-COPD and 508 COPD patients. This bio-informatics approach unveils yet undescribed cilia and ciliopathy genes associated with COPD including NEK6 and PROM2 that may contribute to the pathology, and suggests a COPD endotype exhibiting ciliopathy features (CiliOPD).


Asunto(s)
Ciliopatías/genética , Bases de Datos Genéticas , Enfermedad Pulmonar Obstructiva Crónica/genética , Análisis de Secuencia de ARN/métodos , Ciliopatías/diagnóstico , Ciliopatías/epidemiología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
20.
Development ; 148(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589509

RESUMEN

Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.


Asunto(s)
Remodelación Ósea , Ciliopatías/etiología , Micrognatismo/etiología , Organogénesis , Fenotipo , Animales , Remodelación Ósea/genética , Resorción Ósea , Ciclo Celular/genética , Ciliopatías/diagnóstico , Anomalías Craneofaciales/genética , Susceptibilidad a Enfermedades , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Micrognatismo/diagnóstico , Organogénesis/genética , Osteoblastos/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA