RESUMEN
The engineered human cystathionine-γ-lyase (hCGL) resulting in enhanced activity toward both cysteine and cystine unveils a potential robust antitumor activity. However, the presence of cysteine residues has the potential to induce oligomerization or incorrect disulfide bonding, which may decrease the bioavailability of biopharmaceuticals. Through a meticulous design process targeting the cysteine residues within engineered hCGL, a set of potential beneficial mutants were obtained by virtual screening employing Rosetta and ABACUS. Experimental measurements have revealed that most of the mutants showed increased activity toward both substrates l-Cys and CSSC. Furthermore, mutants C109V and C229D demonstrated Tm value increases of 8.2 and 1.8 °C, respectively. After an 80 min incubation at 60 °C, mutant C229D still maintained high residual activity. Unexpectedly, mutant C109V, displaying activity approximately 2-fold higher than the activity of wild type (WT) for both substrates, showed disappointing instability in plasma, which suggests that computational design still requires further consideration. Analysis of their structure and molecular dynamics (MD) simulation revealed the impact of hydrophobic interaction, hydrogen bonds, and near-attack conformation (NAC) stability on activity and stability. This study acquired information about mutants that exhibit enhanced activity or thermal resistance and serve as valuable guidance for subsequent specific cysteine modifications.
Asunto(s)
Cistationina gamma-Liasa , Cisteína , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Cisteína/química , Cisteína/metabolismo , Humanos , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Estabilidad de Enzimas , Cistina/química , Enlace de Hidrógeno , Mutación , CinéticaRESUMEN
The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.
Asunto(s)
Dominio Catalítico , Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/química , Cristalografía por Rayos X , Especificidad por Sustrato , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , CatálisisRESUMEN
Cystathionine γ-lyase (CGL) is a PLP-dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL-catalyzed process consists of an α,γ-elimination reaction that breaks down cystathionine into cysteine, α-ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H2 S). Importantly, inhibition of the enzyme and consequently of its H2 S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CßS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme-substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL-N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l-propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed.
Asunto(s)
Cistationina gamma-Liasa , Toxoplasma , Humanos , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Cisteína , Toxoplasma/metabolismo , Cistationina/metabolismoRESUMEN
Various d-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for d-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine ß-lyase possesses amino acid racemase activity in addition to ß-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares a relatively high amino acid sequence identity with cystathionine ß-lyase. The enzyme did not show racemase activity toward various amino acids including alanine and lyase and dehydratase activities were highest toward l-cystathionine and l-homoserine, respectively. The enzyme also showed weak activity toward l-cysteine and l-serine but no activity toward d-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.
Asunto(s)
Isomerasas de Aminoácido , Liasas , Humanos , Animales , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Aminoácidos , Cistationina , Cisteína , Homoserina , Liasas/metabolismo , Escherichia coli/metabolismo , Serina , Racemasas y Epimerasas , Alanina , Hidroliasas , Mamíferos/metabolismoRESUMEN
Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.
Asunto(s)
Antibacterianos/farmacología , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sulfuro de Hidrógeno/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Biopelículas , Cristalografía por Rayos X , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Descubrimiento de Drogas , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Tolerancia a Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrolloRESUMEN
Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation, tissue-specific persulfidome profiles and their associated functions are not well characterized, specifically under conditions and interventions known to modulate H2S production. We hypothesize that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific persulfidomes. Here, we find protein persulfidation enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking cystathionine γ-lyase (CGL) have overall decreased tissue protein persulfidation numbers and fail to functionally augment persulfidomes in response to DR, predominantly in kidney, muscle, and brain. Here, we define tissue- and CGL-dependent persulfidomes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.
Asunto(s)
Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Dieta , Proteínas/química , Proteínas/metabolismo , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Cistationina gamma-Liasa/genética , Sulfuro de Hidrógeno/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/metabolismo , Proteínas/genética , TranscriptomaRESUMEN
The development and utilization of inorganic material biosynthesis have evolved into single macromolecular systems. A putative cystathionine γ-lyase of bacteria Stenotrophomonas maltophilia (smCSE) is a newly identified biomolecule that enables the synthesis of nanomaterials. Due to the lack of structural information, the mechanism of smCSE biosynthesis remains unclear. Herein, we obtain two atomic-resolution smCSE-form X-ray structures and confirm that the conformational changes of Tyr108 and Lys206 within the enzyme active sites are critical for the protein-driven synthesis of metal sulfide quantum dots (QDs). The structural stability of tetramer and the specificity of surface amino acids are the basis for smCSE to synthesize quantum dots. The size of QD products can be regulated by predesigned amino acids and the morphology can be controlled through proteolytic treatments. The growth rate is enhanced by the stabilization of a flexible loop in the active site, as shown by the X-ray structure of the engineered protein which fused with a dodecapeptide. We further prove that the smCSE-driven route can be applied to the general synthesis of other metal sulfide nanoparticles. These results provide a better understanding of the mechanism of QD biosynthesis and a new perspective on the control of this biosynthesis by protein modification.
Asunto(s)
Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/ultraestructura , Puntos Cuánticos/química , Aminoácidos , Bacterias/metabolismo , Cistationina gamma-Liasa/química , Sustancias Macromoleculares , Metales , Nanoestructuras , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/metabolismo , Sulfuros/químicaRESUMEN
Cysteine is a semiessential amino acid and plays an important role in metabolism and protein structure and has also been applied in various industrial fields, such as pharmaceutical, food, cosmetic, and animal feed industries. Metabolic engineering studies have been conducted for the cysteine production through bacterial fermentation, but studies on the cysteine biosynthetic pathway in microorganisms are limited. We report the biochemical characteristics of cystathionine γ-lyase from Bacillus cereus ATCC 14579 (BcCGL). We also determined the crystal structure of BcCGL in complex with the PLP cofactor and identified the substrate binding mode. We observed that the replacement of the conserved Glu321 residue to alanine showed increased activity by providing wider active site entrance and hydrophobic interaction for the substrate. We suggest that the structural differences of the α13-α14 region in CGL enzymes might determine the active site conformation.
Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Bacillus cereus/química , Bacillus cereus/genética , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cistationina gamma-Liasa/genética , Cisteína/metabolismo , Cinética , Especificidad por SustratoRESUMEN
The reverse transsulfuration pathway, which is composed of cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize L-cysteine using L-serine and the sulfur atom in L-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-L-serine and L-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate L-cysteine, together with the ß-lyase activity toward L-cystine to generate L-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or L-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or ß-elimination reaction, with the former being the major reaction in the case of cystathionine.
Asunto(s)
Cistationina gamma-Liasa/metabolismo , Lactobacillus plantarum/enzimología , Catálisis , Cristalografía por Rayos X , Cistationina/metabolismo , Cistationina gamma-Liasa/química , Homocisteína/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Especificidad por SustratoRESUMEN
We identify three submicromolar inhibitors with new chemical scaffolds for cystathionine γ-lyase (CSE) by a tandem-well-based high-throughput assay. NSC4056, the most potent inhibitor with an IC50 of 0.6 µM, which is also known as aurintricarboxylic acid, selectively binds to Arg and Tyr residues of CSE active site and preferably inhibits the CSE activity in cells rather than cystathionine ß-synthase (CBS), the other H2S-generating enzyme. Moreover, NSC4056 effectively rescues hypotension in hemorrhagic shock rats.
Asunto(s)
Ácido Aurintricarboxílico/farmacología , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Animales , Ácido Aurintricarboxílico/química , Ácido Aurintricarboxílico/metabolismo , Dominio Catalítico/efectos de los fármacos , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Nitroquinolinas/farmacología , Unión Proteica , Células RAW 264.7 , Ratas Sprague-Dawley , Relación Estructura-ActividadRESUMEN
This paper introduces three ways to determine host-guest complexation of cucurbit[7]uril (CB[7]) with homocysteine (Hcy). After preincubating Hcy and cysteine (Cys) with CB[7], Ellman's reagent (DTNB) was used to detect Hcy and Cys. Only Cys reacted with DTNB and Hcy gave a retarded color change. This suggests that the -SH group of Hcy is buried inside CB[7]. Human cystathionine γ-lyase (hCGL) decreased the level of Hcy degradation after preincubating Hcy and CB[7]. These results suggest that the amount of free Hcy available was decreased by the formation of a Hcy-CB[7] complex. The immunological signal of anti-Hcy monoclonal antibody was decreased significantly by preincubating CB[7] with Hcy. The ELISA results also show that ethanethiol group (-CH2CH2SH) of Hcy, which is an epitope of anti-Hcy monoclonal antibody, was blocked by the cavity in CB[7]. Overall, CB[7] can act as a host by binding selectively with Hcy, but not Cys. The calculated half-complexation formation concentration of CB[7] was 58.2 nmol using Ellman's protocol, 97.9 nmol using hCGL assay and 87.7 nmol using monoclonal antibody. The differing binding abilities of Hcy and Cys towards the CB[7] host may offer a simple and useful method for determining the Hcy concentration in plasma or serum.
Asunto(s)
Bioensayo/métodos , Hidrocarburos Aromáticos con Puentes/química , Homocisteína/análisis , Homocisteína/química , Imidazoles/química , Anticuerpos Monoclonales/inmunología , Cistationina gamma-Liasa/química , Cisteína/química , Ácido Ditionitrobenzoico/química , Epítopos/inmunología , Homocisteína/inmunología , Humanos , Modelos Moleculares , Estructura Molecular , Reactivos de Sulfhidrilo/químicaRESUMEN
2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.
Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Cistationina gamma-Liasa/metabolismo , Aromatizantes/metabolismo , Furanos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Compuestos de Sulfhidrilo/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/genética , Estabilidad de Enzimas , Fermentación , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Sulfurtransferasas/metabolismo , Animales , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Humanos , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sulfito-Oxidasa/química , Sulfito-Oxidasa/metabolismoRESUMEN
Enzyme therapeutics that can degrade l-methionine (l-Met) are of great interest as numerous malignancies are exquisitely sensitive to l-Met depletion. To exhaust the pool of methionine in human serum, we previously engineered an l-Met-degrading enzyme based on the human cystathionine-γ-lyase scaffold (hCGL-NLV) to circumvent immunogenicity and stability issues observed in the preclinical application of bacterially derived methionine-γ-lyases. To gain further insights into the structure-activity relationships governing the chemistry of the hCGL-NLV lead molecule, we undertook a biophysical characterization campaign that captured crystal structures (2.2 Å) of hCGL-NLV with distinct reaction intermediates, including internal aldimine, substrate-bound, gem-diamine, and external aldimine forms. Curiously, an alternate form of hCGL-NLV that crystallized under higher-salt conditions revealed a locally unfolded active site, correlating with inhibition of activity as a function of ionic strength. Subsequent mutational and kinetic experiments pinpointed that a salt bridge between the phosphate of the essential cofactor pyridoxal 5'-phosphate (PLP) and residue R62 plays an important role in catalyzing ß- and γ-eliminations. Our study suggests that solvent ions such as NaCl disrupt electrostatic interactions between R62 and PLP, decreasing catalytic efficiency.
Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Cistationina gamma-Liasa/metabolismo , Metionina/metabolismo , Modelos Moleculares , Selenometionina/metabolismo , Sustitución de Aminoácidos , Arginina/química , Biocatálisis , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Dominio Catalítico , Cistationina/metabolismo , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/genética , Cisteína/metabolismo , Estabilidad de Enzimas , Humanos , Enlace de Hidrógeno , Hidrólisis , Mutagénesis Sitio-Dirigida , Concentración Osmolar , Conformación Proteica , Ingeniería de Proteínas , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por SustratoRESUMEN
Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.
Asunto(s)
Compuestos de Cadmio/sangre , Cristalización/métodos , Cistationina gamma-Liasa/química , Minerales/síntesis química , Nanopartículas/química , Nanopartículas/ultraestructura , Sulfuros/sangre , Productos Biológicos/química , Catálisis , Activación Enzimática , Luz , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Refractometría , Dispersión de Radiación , Propiedades de SuperficieRESUMEN
The present research aimed to isolate the non-polar secondary metabolites that produce the vasodilator effects induced by the dichloromethane extract of Prunus serotina (P. serotina) fruits and to determine whether the NO/cGMP and the H2S/KATP channel pathways are involved in their mechanism of action. A bioactivity-directed fractionation of the dichloromethane extract of P. serotina fruits led to the isolation of ursolic acid and uvaol as the main non-polar vasodilator compounds. These compounds showed significant relaxant effect on rat aortic rings in an endothelium- and concentration-dependent manner, which was inhibited by NG-nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (PAG) and glibenclamide (Gli). Additionally, both triterpenes increased NO and H2S production in aortic tissue. Molecular docking studies showed that ursolic acid and uvaol are able to bind to endothelial NOS and CSE with high affinity for residues that form the oligomeric interface of both enzymes. These results suggest that the vasodilator effect produced by ursolic acid and uvaol contained in P. serotina fruits, involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE.
Asunto(s)
Sulfuro de Hidrógeno/agonistas , Óxido Nítrico/agonistas , Prunus avium/química , Triterpenos/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Alquinos/antagonistas & inhibidores , Alquinos/farmacología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , GMP Cíclico/metabolismo , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Frutas/química , Gliburida/antagonistas & inhibidores , Gliburida/farmacología , Glicina/análogos & derivados , Glicina/antagonistas & inhibidores , Glicina/farmacología , Sulfuro de Hidrógeno/metabolismo , Canales KATP/agonistas , Canales KATP/metabolismo , Masculino , Simulación del Acoplamiento Molecular , NG-Nitroarginina Metil Éster/antagonistas & inhibidores , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Extractos Vegetales/química , Unión Proteica , Ratas , Triterpenos/aislamiento & purificación , Vasodilatadores/aislamiento & purificación , Ácido UrsólicoRESUMEN
Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3°C, with â¼3°C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under perturbation of destabilizers. Furthermore, electrostatic calculations of selected snapshots of CGL 3D structure under different experimental conditions showed a remarkable differences on the polarity of the enzyme surface.
Asunto(s)
Aspergillus fumigatus/enzimología , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estabilidad de Enzimas , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Solventes , Electricidad Estática , Especificidad por Sustrato , Triptófano/químicaRESUMEN
Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from Aspergillus carneus by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50 °C, the thermal stability [half-life time (T1/2)] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg(+2), with no effect by EDTA. Free-CGL (0.04 mM(-1)s(-1)) and PEG-CGL (0.03 mM(-1)s(-1)) have a similar catalytic efficiency to L-cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µM for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains >50% of its initial activity compared to <10% of the free-CGL for acid protease for 30 min. From in vivo pharmacokinetics in New Zealand white rabbits, the T1/2 was 19.1 and 28.9 h for the Holo free-CGL and PEG-CGL, respectively, ensuring the role of PEGylation on shielding the CGL surface from proteolytic attack, reducing its antigenicity, and stabilizing its internal Schiff base. By external infusion of pyridoxal 5'-phosphate (10 µM), the T1/2 of free- and PEG-CGL was prolonged to 24 and 33 h, respectively, so dissociation of pyridoxal 5'-phosphate was one of the main causes of loss of enzyme activity. The biochemical and hematological responses of rabbits to free- and PEG-CGL were assessed, with relative similarity to the negative control, confirming the nil toxicity of enzymes. The titer of IgG was duplicated in response to free- versus PEG-CGL after 45 days. To the best of our knowledge, this is the first report concerned with purification and PEGylation of CGL from fungi, with higher affinity for L-cystathionine. With further molecular studies, CGL will be a promising enzyme against various cardiovascular diseases and antioxidant deficiency, as well as for generation of a neurotransmitter (H2S).
Asunto(s)
Aspergillus/enzimología , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/farmacocinética , Animales , Cistationina/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/aislamiento & purificación , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Cinética , Polietilenglicoles/química , Conejos , Especificidad por SustratoRESUMEN
H2S produced in small amounts by mammalian cells has been identified in mediating biological signaling functions. However, the in situ trapping of endogenous H2S generation is still handicapped by a lack of straightforward methods with high selectivity and fast response. Here, we encapsulate a semi-cyanine-BODIPY hybrid dye (BODInD-Cl) and its complementary energy donor (BODIPY1) into the hydrophobic interior of an amphiphilic copolymer (mPEG-DSPE), especially for building up a ratiometric fluorescent H2S nanoprobe with extraordinarily fast response. A remarkable red-shift in the absorption band with a gap of 200 nm in the H2S response can efficiently switch off the Förster resonance energy transfer (FRET) from BODIPY1 to BODInD-Cl, subsequently recovering the donor fluorescence. Impressively, both the interior hydrophobicity of supramolecular micelles and electron-withdrawing nature of indolium unit in BODInD-Cl can sharply increase aromatic nucleophilic substitution with H2S. The ratiometric strategy based on the unique self-assembled micellar aggregate NanoBODIPY achieves an extremely fast response, enabling in situ imaging of endogenous H2S production and mapping its physiological and pathological consequences. Moreover, the amphiphilic copolymer renders the micellar assembly biocompatible and soluble in aqueous solution. The established FRET-switchable macromolecular envelope around BODInD-Cl and BODIPY1 enables cellular uptake, and makes a breakthrough in the trapping of endogenous H2S generation within raw264.7 macrophages upon stimulation with fluvastatin. This study manifests that cystathione γ-lyase (CSE) upregulation contributes to endogenous H2S generation in fluvastatin-stimulated macrophages, along with a correlation between CSE/H2S and activating Akt signaling pathway.
Asunto(s)
Ácidos Grasos Monoinsaturados/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Sulfuro de Hidrógeno/química , Indoles/química , Nanopartículas/química , Animales , Compuestos de Boro/química , Cistationina gamma-Liasa/química , Colorantes Fluorescentes/química , Fluvastatina , Macrófagos/metabolismo , Ratones , Micelas , Microscopía Confocal , Microscopía Fluorescente/métodos , Polímeros/química , Células RAW 264.7 , Regulación hacia ArribaRESUMEN
Hydrogen sulfide (H2S) has emerged as an important biological signaling molecule. To better understand the multifaceted biological roles of H2S, the development of selective and sensitive biocompatible assays for H2S is becoming increasingly important. Motivated by these challenges, our laboratory is developing new methods to further detect and monitor biological H2S. Here, we describe in detail our recent advances in the development and the use of chemiluminescence-based H2S sensors to assist other investigators with use of these chemical tools. We highlight the use of these tools use by displaying their selectivity and high sensitivity toward H2S and provide examples of assays we have developed to detect enzymatically produced H2S.