Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.554
Filtrar
1.
PeerJ ; 12: e17378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726378

RESUMEN

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Asunto(s)
Ácidos Bóricos , Cloruro de Calcio , Citrus sinensis , Frutas , Algas Marinas , Ácidos Bóricos/farmacología , Citrus sinensis/química , Frutas/química , Frutas/efectos de los fármacos , Algas Marinas/química , Algas Marinas/metabolismo , Cloruro de Calcio/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clorofila/metabolismo
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38714347

RESUMEN

The influence of environmental factors on Salmonella sensitivity to nisin in vitro and in refrigerated orange juice were investigated. Nisin activity was observed in the different conditions, but the highest efficiency was achieved at lower pH (4.0) and with higher bacteriocin concentration (174 µM). Moreover, the bactericidal action was directly proportional to the incubation period. When tested in orange juice, nisin caused a reduction of up to 4.05 logarithm cycles in the Salmonella population. So, environmental factors such as low pH and low temperature favored the sensitization of Salmonella cells to the bactericidal action of nisin. Therefore, this may represent an alternative to control Salmonella in refrigerated foods.


Asunto(s)
Antibacterianos , Citrus sinensis , Jugos de Frutas y Vegetales , Nisina , Refrigeración , Salmonella typhimurium , Nisina/farmacología , Jugos de Frutas y Vegetales/microbiología , Citrus sinensis/química , Citrus sinensis/microbiología , Salmonella typhimurium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Antibacterianos/farmacología , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Conservación de Alimentos/métodos
3.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738910

RESUMEN

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Asunto(s)
Aspergillus niger , Jugos de Frutas y Vegetales , Proteínas Fúngicas , Polisacárido Liasas , Aspergillus niger/enzimología , Aspergillus niger/genética , Jugos de Frutas y Vegetales/análisis , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacárido Liasas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacología , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidad de Enzimas
4.
Food Res Int ; 187: 114422, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763672

RESUMEN

Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.


Asunto(s)
Citrus sinensis , Residuos Industriales , Citrus sinensis/química , Residuos Industriales/análisis , Manipulación de Alimentos/métodos , Industria de Alimentos , Pan/análisis , Valor Nutritivo , Reciclaje , Industria de Procesamiento de Alimentos
5.
Sci Data ; 11(1): 460, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710725

RESUMEN

Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.


Asunto(s)
Citrus sinensis , Genoma de Planta , Citrus sinensis/genética , Cromosomas de las Plantas , Elementos Transponibles de ADN , Sintenía
6.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732578

RESUMEN

This study examined the effects of orange juice (OJ) supplemented with vitamin D3 (2000 IU) and probiotics (Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG, 108 cfu/mL) on cardiometabolic risk factors in overweight and obese adults following a Westernized-type diet. Fifty-three high-risk individuals were randomly assigned to one of two groups. Over 8 weeks, one group consumed a vitamin D3 and probiotic-enriched OJ and the other regular OJ (control). Diets remained unchanged and were documented through food diaries. Measures of metabolic and inflammatory markers and blood pressure were measured at the start and end of the study. Post-intervention, the enriched OJ group showed the following significant metabolic improvements (without changes in triglycerides, inflammation, or central blood pressure): reduced fasting insulin, peripheral blood pressure, body weight (-1.4 kg 95% CI: -2.4, -0.4), energy (-270 kcal 95% CI: -553.2, -13.7), macronutrient (dietary fat -238 kcal 95% CI: -11.9, -1.0; carbohydrates -155 kcal 95% CI: -282.4, -27.3; sugars -16.1 g 95% CI: -11.9, -1.0) intake, and better lipid profiles (total cholesterol -10.3 mg/dL 95% CI: -21.4, 0.9; LDL-C -7 mg/dL 95% CI: -13.5, -0.5). The enriched OJ led to weight loss, less energy/macronutrient consumption, improved lipid profiles, and increased insulin sensitivity after 8 weeks in those following a Westernized diet, thus indicating potential benefits for cardiometabolic risk. This study was a part of FunJuice-T2EDK-01922, which was funded by the EU Regional Development Fund and Greek National Resources.


Asunto(s)
Presión Sanguínea , Factores de Riesgo Cardiometabólico , Colecalciferol , Citrus sinensis , Dieta Occidental , Jugos de Frutas y Vegetales , Resistencia a la Insulina , Lípidos , Probióticos , Humanos , Masculino , Probióticos/administración & dosificación , Femenino , Persona de Mediana Edad , Presión Sanguínea/efectos de los fármacos , Colecalciferol/administración & dosificación , Colecalciferol/farmacología , Lípidos/sangre , Obesidad/sangre , Adulto , Suplementos Dietéticos , Sobrepeso , Peso Corporal , Pérdida de Peso , Lacticaseibacillus rhamnosus
7.
Food Res Int ; 186: 114328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729714

RESUMEN

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Asunto(s)
Citrus sinensis , Heces , Flavanonas , Jugos de Frutas y Vegetales , Microbioma Gastrointestinal , Humanos , Flavanonas/orina , Masculino , Adulto , Femenino , Heces/microbiología , Heces/química , Hesperidina/orina , Espectrometría de Masas en Tándem , Persona de Mediana Edad , Adulto Joven , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Hidroxibenzoatos/orina
8.
Food Chem ; 452: 139536, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723569

RESUMEN

Eating food contaminated by foodborne pathogens can lead to illness. The development of electrochemical sensors for pathogen detection has received widespread attention. However, the analytical performance of electrochemical sensors is inevitably affected by the non-specific adsorption of molecules in the sample. Moreover, the external signal probes might be affected by the complex components in the sample accompanied with signal suppression. This work presents an electrochemical aptasensor for Salmonella typhimurium detection based on the self-signal of poly-xanthurenic acid and the antifouling ability of chondroitin sulfate. The detection time was 60 min. The linear range was from 101 to 107 CFU/mL, and the detection limit was 3 CFU/mL. The biosensors presented good repeatability and storage stability. And the biosensors has been successfully applied in milk and orange juice. This strategy is expected to be applied in the design of other antifouling biosensors, to achieve rapid detection of pathogens and ensure food safety.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Contaminación de Alimentos , Leche , Salmonella typhimurium , Técnicas Biosensibles/instrumentación , Salmonella typhimurium/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis , Leche/microbiología , Leche/química , Animales , Límite de Detección , Microbiología de Alimentos , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Citrus sinensis/microbiología , Citrus sinensis/química
9.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733637

RESUMEN

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Frutas , Cromatografía de Gases y Espectrometría de Masas , Guayacol , Esporas Bacterianas , Alicyclobacillus/aislamiento & purificación , Alicyclobacillus/genética , Alicyclobacillus/clasificación , Alicyclobacillus/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Guayacol/análogos & derivados , Guayacol/metabolismo , Guayacol/farmacología , Frutas/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Brasil , Microextracción en Fase Sólida , Argentina , Malus/microbiología , Italia , Calor , Citrus sinensis/microbiología
10.
PLoS One ; 19(4): e0297453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625898

RESUMEN

Assessing the microbes present on tree fruit carpospheres as the fruit enters postharvest processing could have useful applications, as these microbes could have a major influence on spoilage, food safety, verification of packing process controls, or other aspects of processing. The goal of this study was to establish a baseline profile of bacterial communities associated with apple (pome fruit), peach (stone fruit), and Navel orange (citrus fruit) at harvest. We found that commercial peaches had the greatest bacterial richness followed by oranges then apples. Time of harvest significantly changed bacterial diversity in oranges and peaches, but not apples. Shifts in diversity varied by fruit type, where 70% of the variability in beta diversity on the apple carposphere was driven by the gain and loss of species (i.e., nestedness). The peach and orange carposphere bacterial community shifts were driven by nearly an even split between turnover (species replacement) and nestedness. We identified a small core microbiome for apples across and between growing seasons that included only Methylobacteriaceae and Sphingomonadaceae among the samples, while peaches had a larger core microbiome composed of five bacterial families: Bacillaceae, Geodermtophilaceae, Nocardioidaceae, Micrococcaeceae, and Trueperaceae. There was a relatively diverse core microbiome for oranges that shared all the families present on apples and peaches, except for Trueperaceae, but also included an additional nine bacterial families not shared including Oxalobacteraceae, Cytophagaceae, and Comamonadaceae. Overall, our findings illustrate the important temporal dynamics of bacterial communities found on major commercial tree fruit, but also the core bacterial families that constantly remain with both implications being important entering postharvest packing and processing.


Asunto(s)
Citrus sinensis , Prunus persica , Humanos , Estaciones del Año , Bacterias , Citrus sinensis/microbiología , Frutas/microbiología
11.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582926

RESUMEN

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Citrus/química , Escherichia coli/metabolismo , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Citrus sinensis/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
12.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562057

RESUMEN

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Asunto(s)
Citrus sinensis , Ácidos Cumáricos , Microbioma Gastrointestinal , Putrescina/análogos & derivados , Citrus sinensis/metabolismo , Metilaminas/metabolismo
13.
Molecules ; 29(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675601

RESUMEN

To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography-mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.


Asunto(s)
Citrus sinensis , Fermentación , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Saccharomyces cerevisiae/metabolismo , Citrus sinensis/química , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Aromatizantes/análisis , Aromatizantes/química
14.
Physiol Plant ; 176(3): e14304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686664

RESUMEN

Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.


Asunto(s)
Carbono , Citrus , Fotosíntesis , Hojas de la Planta , Hojas de la Planta/metabolismo , Carbono/metabolismo , Fotosíntesis/fisiología , Citrus/metabolismo , Citrus/fisiología , Citrus/crecimiento & desarrollo , Ciclo del Carbono , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Biomasa , Árboles/metabolismo , Árboles/fisiología , Citrus sinensis/metabolismo , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/fisiología
15.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621573

RESUMEN

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Citrus sinensis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Xanthomonas , Citrus sinensis/microbiología , Citrus sinensis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Xanthomonas/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Filogenia , Oxilipinas/metabolismo , Genoma de Planta , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Familia de Multigenes
16.
Mol Plant Microbe Interact ; 37(5): 459-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597923

RESUMEN

Citrus Huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CLas), is one of the most destructive citrus diseases worldwide, and defense-related Citrus sinensis gene resources remain largely unexplored. Calcium signaling plays an important role in diverse biological processes. In plants, a few calcium-dependent protein kinases (CDPKs/CPKs) have been shown to contribute to defense against pathogenic microbes. The genome of C. sinensis encodes dozens of CPKs. In this study, the role of C. sinensis calcium-dependent protein kinases (CsCPKs) in C. sinensis defense was investigated. Silencing of CsCPK6 compromised the induction of defense-related genes in C. sinensis. Expression of a constitutively active form of CsCPK6 (CsCPK6CA) triggered the activation of defense-related genes in C. sinensis. Complementation of CsCPK6 rescued the defense-related gene induction in an Arabidopsis thaliana cpk4/11 mutant, indicating that CsCPK6 carries CPK activity and is capable of functioning as a CPK in Arabidopsis. Moreover, an effector derived from CLas inhibits defense induced by the expression of CsCPK6CA and autophosphorylation of CsCPK6, which suggests the involvement of CsCPK6 and calcium signaling in defense. These results support a positive role for CsCPK6 in C. sinensis defense against CLas, and the autoinhibitory regulation of CsCPK6 provides a potential genome-editing target for improving C. sinensis defense. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Citrus sinensis , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Citrus sinensis/genética , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Resistencia a la Enfermedad/genética , Liberibacter/genética , Liberibacter/fisiología
17.
PeerJ ; 12: e17001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436028

RESUMEN

The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.


Asunto(s)
Arabidopsis , Citrus sinensis , Humanos , Citrus sinensis/genética , Arabidopsis/genética , Secuencia de Aminoácidos , Bacterias , Dulces
18.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474170

RESUMEN

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Asunto(s)
Infecciones Bacterianas , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , Citrus/genética , Filogenia , Xanthomonas/fisiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
19.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490399

RESUMEN

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Citrus sinensis/metabolismo , Proteínas Portadoras/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Citrus/metabolismo
20.
Food Chem ; 446: 138899, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452506

RESUMEN

Amitraz (AMT) is a broad-spectrum formamidine insecticide and acaricide. In this study, we produced an anti-AMT monoclonal antibody (mAb) with high performance. The half-maximal inhibitory concentration of the anti-AMT mAb was 4.418 ng/mL, the cross reactivity with other insecticides was negligible, and an affinity constant was 2.06 × 109 mmol/L. Additionally, we developed an immunochromatographic assay for the rapid detection of AMT residues in oranges, tomatoes, and eggplants. The cut-off values were 2000 µg/kg in oranges and tomato samples and 1000 µg/kg in eggplant samples and the calculated limits of detection were 14.521 µg/kg, 6.281 µg/kg, and 3.518 µg/kg in oranges, tomatoes, and eggplants, respectively, meeting the detection requirements for AMT in fruits and vegetables. The recovery rates ranged between 95.8 % and 105.2 %, consistent with the recovery rates obtained via LC-MS/MS. Our developed immunochromatographic assay can effectively, accurately, and rapidly determine AMT residues in oranges, tomatoes, and eggplants.


Asunto(s)
Citrus sinensis , Insecticidas , Solanum lycopersicum , Solanum melongena , Toluidinas , Cromatografía Liquida , Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Inmunoensayo/métodos , Límite de Detección , Cromatografía de Afinidad/métodos , Ensayo de Inmunoadsorción Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA