Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Planta ; 260(3): 67, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088064

RESUMEN

MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.


Asunto(s)
Antocianinas , Citrus sinensis , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Antocianinas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/genética , Vitis/fisiología , Vitis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Frío , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
2.
BMC Genomics ; 25(1): 735, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080567

RESUMEN

BACKGROUND: The fruit ripening period is an important target trait in fruit tree crop breeding programs. Thus, citrus tree breeders seek to develop extreme early ripening cultivars that allow optimization of citrus maturation periods. In this study, we explored the regulatory network involved in fruit ripening in Citrus sinensis using the 'Newhall' navel orange variety and its early-ripening mutant, 'Gannanzao'. This research will provide a basis for further research on important signaling pathways, gene functions and variety breeding of Citrus sinensis related to fruit ripening period. RESULTS: Physiological analyses suggested that early fruit ripening in 'Gannanzao' is regulated by early accumulation of abscisic acid (ABA), persistently high levels of jasmonic acid (JA), and higher sucrose content in the pericarp. Pericarp samples from 'Gannanzao' and 'Newhall' navel oranges were sampled for RNA sequencing analysis at 180, 200, and 220 days after flowering; 1430 differentially expressed genes (DEGs) were identified. Functional enrichment analysis indicated that these DEGs were mainly enriched in the plant hormone signal transduction and sugar metabolism pathways, as well as other pathways related to fruit ripening. Important DEGs associated with fruit ripening in 'Gannanzao' included genes involved in ABA and JA metabolism and signal transduction, as well as sugar metabolism. Weighted gene co-expression network analysis showed that the deep pink module had the strongest correlations with ABA content, JA content, and early ripening. Based on gene functionality and gene expression analyses of 37 genes in this module, two candidate hub genes and two ethylene response factor 13 (ERF13) genes (Cs_ont_5g000690 and Cs_ont_5g000700) were identified as key genes regulated by ABA and JA signaling. These findings will help to clarify the mechanisms that underlie early citrus fruit ripening and will lead to the development of excellent genetic resources for further breeding of extreme early-ripening varieties. CONCLUSIONS: Through analyses of the 'Newhall' navel orange cultivar and its early-ripening mutant 'Gannanzao', we identified genes involved in ABA and JA metabolism, signal transduction, and sugar metabolism that were related to fruit ripening. Among these, two ERF13 genes were inferred to be key genes in the regulation of fruit ripening. These findings provide insights into the genetic architecture related to early fruit ripening in C. sinensis.


Asunto(s)
Citrus sinensis , Frutas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Citrus sinensis/genética , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/genética , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850709

RESUMEN

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Asunto(s)
Aluminio , Monoterpenos Bicíclicos , Citrus , Limoneno , Fotosíntesis , Hojas de la Planta , Terpenos , Aluminio/toxicidad , Terpenos/metabolismo , Citrus/metabolismo , Citrus/efectos de los fármacos , Limoneno/metabolismo , Fotosíntesis/efectos de los fármacos , Monoterpenos Bicíclicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Monoterpenos/metabolismo , Hemiterpenos/metabolismo , Ciclohexenos/metabolismo , Fosfatos de Azúcar/metabolismo , Butadienos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos Ciclohexánicos , Citrus sinensis/metabolismo , Citrus sinensis/efectos de los fármacos , Citrus sinensis/genética , Clorofila/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Volatilización
4.
Microbiol Spectr ; 12(7): e0351323, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38785434

RESUMEN

Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.


Asunto(s)
Citrus sinensis , MicroARNs , Enfermedades de las Plantas , Proteínas Virales , MicroARNs/metabolismo , MicroARNs/genética , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Citrus sinensis/virología , Citrus sinensis/metabolismo , Virus de Plantas/genética , Virus de Plantas/metabolismo , Virus de Plantas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Procesamiento Postranscripcional del ARN , Citrus/virología , Citrus/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética
5.
Physiol Plant ; 176(3): e14304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686664

RESUMEN

Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.


Asunto(s)
Carbono , Citrus , Fotosíntesis , Hojas de la Planta , Hojas de la Planta/metabolismo , Carbono/metabolismo , Fotosíntesis/fisiología , Citrus/metabolismo , Citrus/fisiología , Citrus/crecimiento & desarrollo , Ciclo del Carbono , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Biomasa , Árboles/metabolismo , Árboles/fisiología , Citrus sinensis/metabolismo , Citrus sinensis/crecimiento & desarrollo , Citrus sinensis/fisiología
6.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562057

RESUMEN

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Asunto(s)
Citrus sinensis , Ácidos Cumáricos , Microbioma Gastrointestinal , Putrescina/análogos & derivados , Citrus sinensis/metabolismo , Metilaminas/metabolismo
7.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582926

RESUMEN

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Citrus/química , Escherichia coli/metabolismo , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Citrus sinensis/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
8.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490399

RESUMEN

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Citrus , Citrus sinensis/metabolismo , Proteínas Portadoras/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Citrus/metabolismo
9.
J Proteome Res ; 23(8): 2857-2869, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38373055

RESUMEN

Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.


Asunto(s)
Citrus sinensis , Hemípteros , Enfermedades de las Plantas , Proteómica , Rhizobiaceae , Transcriptoma , Animales , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/microbiología , Citrus sinensis/parasitología , Hemípteros/microbiología , Hemípteros/genética , Hemípteros/metabolismo , Insectos Vectores/microbiología , Insectos Vectores/metabolismo , Liberibacter/patogenicidad , Liberibacter/genética , Liberibacter/metabolismo , Metabolómica/métodos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Proteoma/análisis , Proteómica/métodos , Rhizobiaceae/patogenicidad , Rhizobiaceae/genética , Rhizobiaceae/fisiología
10.
Sci Adv ; 10(9): eadk2051, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416837

RESUMEN

Sweet orange (Citrus sinensis) exhibits limited genetic diversity and high susceptibility to Huanglongbing (HLB). Breeding HLB-tolerant orange-like hybrids is in dire need. However, our understanding of the key compounds responsible for orange flavor and their genetic regulation remains elusive. Evaluating 179 juice samples, including oranges, mandarins, Poncirus trifoliata, and hybrids, distinct volatile compositions were found. A random forest model predicted untrained samples with 78% accuracy and identified 26 compounds crucial for orange flavor. Notably, seven esters differentiated orange from mandarin flavor. Cluster analysis showed six esters with shared genetic control. Differential gene expression analysis identified C. sinensis alcohol acyltransferase 1 (CsAAT1) responsible for ester production in orange. Its activity was validated through overexpression assays. Phylogeny revealed the functional allele was inherited from pummelo. A SNP-based DNA marker in the coding region accurately predicted phenotypes. This study enhances our understanding of orange flavor compounds and their biosynthetic pathways and expands breeding options for orange-like cultivars.


Asunto(s)
Citrus sinensis , Citrus , Fitomejoramiento , Citrus sinensis/genética , Citrus sinensis/química , Citrus sinensis/metabolismo , Citrus/química , Frutas/química , Análisis por Conglomerados
11.
Food Res Int ; 177: 113718, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225107

RESUMEN

Orange peel is an interesting by-product because of its composition, particularly its dietary fibre and flavanones. The aim of this work was to extract different fibre fractions from orange peel to obtain potential added-value ingredients and evaluate how the presence of fibre may interfere with (poly)phenol metabolism. Using an aqueous extraction, as a green extraction method, an insoluble fibre fraction (IFF) and a water-soluble extract (WSE) were obtained. Those fractions were analysed to determine the proximate and dietary fibre composition, hydration properties, (poly)phenol composition and antioxidant capacity, comparing the results with the orange peel (OP). The IFF presented the highest content of insoluble dietary fibre and the WSE showed the highest content of (poly)phenols, these being mainly flavanones. An in vitro faecal fermentation was carried out to evaluate the production of short-chain fatty acids (SCFAs) and lactate as prebiotic indicators; the IFF gave the highest production, derived from the greater presence of dietary fibre. Moreover, catabolites from (poly)phenol metabolism were also analysed, phenylpropanoic acids being the major ones, followed by phenylacetic acids and benzoic acids. These catabolites were found in higher quantities in WSE, because of the greater presence of (poly)phenols in its composition. IFF also showed a significant production of these catabolites, which was delayed by the greater presence of fibre. These results reveal that the new ingredients, obtained by an environmentally friendly water extraction procedure, could be used for the development of new foods with enhanced nutritional and healthy properties.


Asunto(s)
Citrus sinensis , Flavanonas , Fenoles , Citrus sinensis/metabolismo , Fermentación , Fenol , Fibras de la Dieta/metabolismo , Flavanonas/metabolismo , Ácido Láctico , Digestión , Agua
12.
Environ Res ; 242: 117625, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007079

RESUMEN

Ecologically inspired to develop silver, gold and silver/gold bimetallic nanoparticles from discarded orange peel extract. The plant-derived compounds included in discarded orange peel extract have been accountable for the development of Ag, Au and Ag-Au bimetallic nanoparticles, that might be used in the biosynthetic process. The qualitative assessment of developed silver, gold and silver/gold bimetallic nanoparticles has been performed by UV-visible, XRD pattern, FT IR analysis, TEM/HRTEM, EDX and BET isotherm analysis. In this investigation, the photocatalytic effect of developed silver, gold and silver/gold bimetallic nanoparticles on Congo red dye breakdown efficiency was achieved at 96%, 94%, and 99.2%, respectively. Due to prolonged electron-hole recombination process was investigated using UV irradiation and reused for up to 5 consecutive runs without significant loss of photocatalytic activity. Moreover, silver, gold, and silver/gold bimetallic nanoparticles manufactured in an environmentally benign manner could potentially contribute to the ecological cleanup.


Asunto(s)
Citrus sinensis , Nanopartículas del Metal , Plata , Rojo Congo , Citrus sinensis/metabolismo , Carcinógenos , Oro , Extractos Vegetales
13.
Plant Signal Behav ; 18(1): 2294426, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38104280

RESUMEN

Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing identification, phylogenetic analysis, detection of conserved motifs and domains, gene structure, cis-acting elements, gene expression trends, and subcellular localization analysis. Our findings established that a total of 22 CsTRXs with thioredoxin domains were identified in the genome of C. sinensis. Phylogenetic analysis indicated that CsTRXs were divided into six subclusters. Conserved motifs analysis of CsTRXs indicated a wide range of conserved motifs. A significant number of cis-acting elements associated with both abiotic and biotic stress responses, inclusive of numerous phytohormone-related elements, were detected in the promoter regions of CsTRXs. The expression levels of CsTRXs including CsTRXf1, CsTRXh1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were observed to be reduced upon pathogen infection. Subcellular localization analysis found that CsTRXf1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were predominantly localized in chloroplasts, whereas CsTRXh1 was distributed indiscriminately. This research yields integral data on CsTRXs, facilitating future efforts to decipher the gene functions of CsTRXs.


Asunto(s)
Citrus sinensis , Citrus sinensis/genética , Citrus sinensis/metabolismo , Filogenia , Familia de Multigenes , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Expresión Génica , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
14.
PLoS One ; 18(11): e0294233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37956187

RESUMEN

Lectins are sugar-binding proteins found abundantly in plants. Lectin superfamily members have diverse roles, including plant growth, development, cellular processes, stress responses, and defense against microbes. However, the genome-wide identification and functional analysis of lectin genes in sweet orange (Citrus sinensis L.) remain unexplored. Therefore, we used integrated bioinformatics approaches (IBA) for in-depth genome-wide identification, characterization, and regulatory factor analysis of sweet orange lectin genes. Through genome-wide comparative analysis, we identified a total of 141 lectin genes distributed across 10 distinct gene families such as 68 CsB-Lectin, 13 CsLysin Motif (LysM), 4 CsChitin-Bind1, 1 CsLec-C, 3 CsGal-B, 1 CsCalreticulin, 3 CsJacalin, 13 CsPhloem, 11 CsGal-Lec, and 24 CsLectinlegB.This classification relied on characteristic domain and phylogenetic analysis, showing significant homology with Arabidopsis thaliana's lectin gene families. A thorough analysis unveiled common similarities within specific groups and notable variations across different protein groups. Gene Ontology (GO) enrichment analysis highlighted the predicted genes' roles in diverse cellular components, metabolic processes, and stress-related regulation. Additionally, network analysis of lectin genes with transcription factors (TFs) identified pivotal regulators like ERF, MYB, NAC, WRKY, bHLH, bZIP, and TCP. The cis-acting regulatory elements (CAREs) found in sweet orange lectin genes showed their roles in crucial pathways, including light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and more. These findings will aid in the in-depth molecular examination of these potential genes and their regulatory elements, contributing to targeted enhancements of sweet orange species in breeding programs.


Asunto(s)
Citrus sinensis , Citrus sinensis/genética , Citrus sinensis/metabolismo , Lectinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Fitomejoramiento , Genoma de Planta , Regulación de la Expresión Génica de las Plantas
15.
Sci Rep ; 13(1): 18513, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898635

RESUMEN

The management of inflammatory bowel diseases has been widely investigated, especially ulcerative colitis. Thus, studies with the application of new probiotic products are needed in the prevention/treatment of these clinical conditions. The objective of this work was to evaluate the effects of probiotic orange juice containing Pediococcus acidilactici CE51 in a murine model of colitis. 45 male Swiss lineage mice were used, divided into five groups (n = 9): control, colitis, colitis + probiotic (probiotic orange juice containing CE51), colitis + placebo (orange juice) and colitis + sulfasalazine (10 mg/kg/Weight). The induction of colitis was performed with dextran sodium sulfate (3%). The treatment time was 5 and 15 days after induction. Histopathological analysis, serum measurements of TNF-α and C-reactive protein and metagenomic analysis of feces were performed after euthanasia. Probiotic treatment reduced inflammation in the small intestine, large intestine and spleen. The probiotic did not alter the serum dosages of TNF-α and C-reactive protein. Their use maintained the quantitative ratio of the phylum Firmicutes/Bacteroidetes and increased Lactobacillus helveticus with 15 days of treatment (p < 0.05). The probiotic orange juice containing P. acidilactici CE51 positively modulated the gut microbiota composition and attenuated the inflammation induced in colitis.


Asunto(s)
Citrus sinensis , Colitis , Microbioma Gastrointestinal , Pediococcus acidilactici , Probióticos , Masculino , Ratones , Animales , Pediococcus acidilactici/metabolismo , Citrus sinensis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína C-Reactiva/metabolismo , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inflamación/patología , Sulfato de Dextran/toxicidad , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones Endogámicos C57BL , Colon/patología
16.
Nat Genet ; 55(11): 1964-1975, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783780

RESUMEN

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Ácido Cítrico/metabolismo , Frutas/genética , China
17.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570764

RESUMEN

Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.


Asunto(s)
Citrus sinensis , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Tensoactivos/toxicidad , Tensoactivos/metabolismo , Contaminación por Petróleo/análisis , Citrus sinensis/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/análisis
18.
BMC Plant Biol ; 23(1): 296, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268922

RESUMEN

BACKGROUND: Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS: A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS: The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.


Asunto(s)
Antocianinas , Citrus sinensis , Antocianinas/metabolismo , Ácido Cítrico/metabolismo , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Food Chem ; 425: 136427, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245462

RESUMEN

In this study, we aimed to evaluate the effects of solid waste of Citrus sinensis (SWC) supplementation in diet on common carp (Cyprinus carpio) flesh quality and the potential mechanisms underlying these effects. Four diets, each with different levels of SWC (0%, 5%, 10%, and 15%), were formulated and administered to C. carpio (48.83 ± 5.59 g) for 60 days. The results showed that SWC diet significantly enhanced specific growth rate, muscle sweetness (via sweet amino acids and sweet molecules), and the nutritional value of fish meat (increased protein, α-vitamin E, and allopurinol). Chromatography-mass spectrometry analyses indicated that SWC supplementation increased the essential amino acid content in the diet. In addition, SWC diet promoted biosynthesis of non-essential amino acids in muscle by enhancing glycolysis and the tricarboxylic acid cycle. In conclusion, SWC could be a cost-effective solution for providing nutritious and flavourful aquatic products.


Asunto(s)
Carpas , Citrus sinensis , Animales , Carpas/metabolismo , Citrus sinensis/metabolismo , Residuos Sólidos/análisis , Dieta , Aminoácidos/metabolismo , Metaboloma , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
20.
BMC Plant Biol ; 23(1): 233, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37131162

RESUMEN

BACKGROUND: Flavanone 3-hydroxylase (F3H), a key enzyme in the flavonoid biosynthetic pathway, plays an important role in the regulation of flavonols and anthocyanidins accumulation. Citrus fruit is a rich source of flavonoids with varied flavonoid compositions among different varieties. To date, the study on F3H is limited in citrus, and its roles in regulating flavonoid accumulation in citrus fruit are still unclear. RESULTS: In this study, we isolated a CitF3H from three different citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Ponkan mandarin (C. reticulata Blanco) and blood orange 'Moro' (C. sinensis Osbeck). Functional analysis showed that CitF3H encoded a functional flavanone 3-hydroxylase. It catalyzed the hydroxylation of naringenin to yield dihydrokaempferol, which was a precursor of anthocyanins in flavonoid biosynthetic pathway. In the juice sacs, CitF3H was differentially expressed among the three citrus varieties, and its expression level was positively correlated with the accumulation of anthocyanins during the ripening process. In the juice sacs of Satsuma mandarin and Ponkan mandarin the expression of CitF3H kept constant at an extremely low level, and no anthocyanin was accumulated during the ripening process. In contrast, the expression of CitF3H increased rapidly along with the accumulation of anthocyanin in the juice sacs of blood orange 'Moro' during the ripening process. In addition, we found that blue light irradiation was effective to up-regulate the expression of CitF3H and improve anthocyanin accumulation in the juice sacs of blood orange 'Moro' in vitro. CONCLUSION: CitF3H was a key gene regulating anthocyanin accumulation in the juice sacs of citrus fruit. The results presented in this study will contribute to elucidating anthocyanin biosynthesis in citrus fruit, and provide new strategies to improve the nutritional and commercial values of citrus fruit.


Asunto(s)
Citrus , Oxigenasas de Función Mixta , Antocianinas/metabolismo , Citrus/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA