Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.825
Filtrar
1.
Food Res Int ; 190: 114610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945575

RESUMEN

Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.


Asunto(s)
Queso , Microbiología de Alimentos , Esporas Bacterianas , Noruega , Queso/microbiología , Esporas Bacterianas/aislamiento & purificación , Leche/microbiología , Clostridium/aislamiento & purificación , Clostridium/genética , Animales , Bacillus/aislamiento & purificación , Bacillus/genética , Bacillus/clasificación , Manipulación de Alimentos/métodos , Industria Lechera
2.
Artículo en Inglés | MEDLINE | ID: mdl-38861306

RESUMEN

Reductive soil disinfestation (RSD), also known as biological soil disinfestation, is a bioremediation method used to suppress soil-borne plant pathogens by stimulating the activity of indigenous anaerobic bacteria in the soil. An anaerobic bacterial strain (E14T) was isolated from an anoxic soil sample subjected to RSD treatment and then comprehensively characterized. Cells of the strain were Gram-stain-positive, curved to sigmoid, and spore-forming rods. Cells were motile with a polar flagellum. Strain E14T grew in peptone-yeast extract broth, indicating that it utilized proteinous compounds. Strain E14T was also saccharolytic and produced acetate, isobutyrate, butyrate, isovalerate and gases (H2 and CO2) as fermentation products. The strain did not decompose any of examined polysaccharides except for starch. The major cellular fatty acids of strain E14T were iso-C15:0 and iso-C15:0 DMA. The closest relative to strain E14T, based on 16S rRNA gene sequences, was Clostridium thermarum SYSU GA15002T (96.2 %) in the Clostridiaceae. Whole-genome analysis of strain E14T showed that its genome was 4.66 Mb long with a genomic DNA G+C content of 32.5 mol%. The average nucleotide identity (ANIb) between strain E14T and C. thermarum SYSU GA15002T was 69.0 %. The presence of the genes encoding glycolysis and butyrate production via the acetyl-CoA pathway was confirmed through genome analysis. Based on the obtained phylogenetic, genomic and phenotypic data, we propose that strain E14T should be assigned to the genus Clostridium in the family Clostridiaceae as Clostridium omnivorum sp. nov. The type strain is E14T (=NBRC 115133T=DSM 114974T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , Clostridium , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Clostridium/genética , Clostridium/aislamiento & purificación , Clostridium/clasificación , ADN Bacteriano/genética , Genoma Bacteriano , Anaerobiosis , Biodegradación Ambiental
3.
Artículo en Inglés | MEDLINE | ID: mdl-38864839

RESUMEN

A Gram-stain-positive, strictly anaerobic, endospore-forming and rod-shaped (0.6-0.8×2.7-13.1 µm) bacterium, designated as 5 N-1T, was isolated from a yellow water sample collected from the manufacturing process of Nongxiangxing baijiu in the Yibin region of Sichuan, PR China. Growth occurred at 15-40 °C (optimum growth at 37 °C), at pH 6.0-9.0 (optimum growth at pH 7.0) and in NaCl concentrations of 0-1 % (w/v) and ethanol concentrations of 0-2 % (v/v). The major fatty acids in strain 5 N-1T were C16 : 0, C18 : 0 and C14 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and one unidentified lipid. Phylogenetic analysis of its 16S rRNA gene sequence indicated that strain 5 N-1T was most closely related to Clostridium weizhouense YB-6T (97.70 %) and Clostridium uliginosum DSM 12992T (97.56 %). The average nucleotide identity and digital DNA‒DNA hybridization values between strain 5 N-1T and the above two type strains were 80.89 and 80.05 % and 25.80 and 25.30 %, respectively, which were all below the species thresholds. The genome size of strain 5 N-1T was 3.5 Mbp and the DNA G+C content was 27.5 mol%. Based on the results of phenotypic and genotypic analyses, strain 5 N-1T represents a novel species of the genus Clostridium, for which the name Clostridium aquiflavi sp. nov. is proposed. The type strain is Clostridium aquiflavi 5 N-1T (=CICC 24886T=JCM 35355T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , Clostridium , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , China , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Clostridium/genética , Clostridium/aislamiento & purificación , Clostridium/clasificación , Microbiología del Agua , Fosfolípidos/análisis
4.
Microb Biotechnol ; 17(6): e14502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888486

RESUMEN

Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.


Asunto(s)
Butiratos , Fermentación , Ingeniería Metabólica , Butiratos/metabolismo , Ingeniería Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridium/metabolismo , Clostridium/genética , Lipasa/metabolismo , Lipasa/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Microbiología Industrial/métodos , Biocombustibles
5.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38825826

RESUMEN

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Clostridium , Fermentación , Factores de Transcripción , Clostridium/genética , Clostridium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Metabólica/métodos , Gases/metabolismo
6.
Curr Microbiol ; 81(8): 244, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935285

RESUMEN

A novel thermotolerant caproic acid-producing bacterial strain, Clostridium M1NH, was successfully isolated from sewage sludge. Ethanol and acetic acid at a molar ratio of 4:1 proved to be the optimal substrates, yielding a maximum caproic acid production of 3.5 g/L. Clostridium M1NH exhibited remarkable tolerance to high concentrations of ethanol (up to 5% v/v), acetic acid (up to 5% w/v), and caproic acid (up to 2% w/v). The strain also demonstrated a wide pH tolerance range (pH 5.5-7.5) and an elevated temperature optimum between 35 and 40 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Clostridium M1NH shares a 98% similarity with Clostridium luticellarii DSM 29923 T. The robustness of strain M1NH and its efficient caproic acid production from low-cost substrates highlight its potential for sustainable bio-based chemical production. The maximum caproic acid yield achieved by Clostridium M1NH was 1.6-fold higher than that reported for C. kluyveri under similar fermentation conditions. This study opens new avenues for valorizing waste streams and advancing a circular economy model in the chemical industry.


Asunto(s)
Ácido Acético , Clostridium , Etanol , Fermentación , Filogenia , ARN Ribosómico 16S , Ácido Acético/metabolismo , Etanol/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium/clasificación , ARN Ribosómico 16S/genética , Termotolerancia , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Caprilatos/metabolismo , Temperatura , Caproatos
7.
Biotechnol Adv ; 73: 108379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754796

RESUMEN

Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.


Asunto(s)
Clostridium , Fermentación , Hidrógeno , Ingeniería Metabólica , Hidrógeno/metabolismo , Ingeniería Metabólica/métodos , Clostridium/metabolismo , Clostridium/genética , Redes y Vías Metabólicas , Biocombustibles
8.
Sci Data ; 11(1): 432, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693191

RESUMEN

The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.


Asunto(s)
Clostridium , Genoma Bacteriano , Filogenia , Clostridium/genética , Solventes , Fermentación
9.
Artículo en Inglés | MEDLINE | ID: mdl-38728064

RESUMEN

A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3T, was isolated from the faeces of an alpaca (Lama pacos). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Clostridium with the highest sequence similarities to Clostridium magnum DSM 2767T (96.8 %), Clostridium carboxidivorans P7T (96.3 %) and Clostridium aciditolerans JW/YJL-B3T (96.1 %). The average nucleotide identity between A1-XYC3T, C. magnum, C. carboxidivorans and C. aciditolerans was 77.4, 76.1 and 76.6  %, respectively. The predominant components of the cellular fatty acids of A1-XYC3T were C14 : 0, C16 : 0 and summed feature 10, containing C18:0/C17:0 cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within Clostridium sensu stricto for which the name Clostridium tanneri sp. nov. is proposed. The type strain of this species is strain A1-XYC3T (=CCM 9376T=NRRL B-65691T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , Camélidos del Nuevo Mundo , Clostridium , ADN Bacteriano , Ácidos Grasos , Heces , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Camélidos del Nuevo Mundo/microbiología , Heces/microbiología , ARN Ribosómico 16S/genética , Animales , Clostridium/genética , Clostridium/clasificación , Clostridium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular
10.
Nat Commun ; 15(1): 4276, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769296

RESUMEN

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.


Asunto(s)
Ácido Desoxicólico , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucosa , Ácido Desoxicólico/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Femenino , Glucosa/metabolismo , Ratones , Humanos , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Clostridium/metabolismo , Clostridium/genética , Ácido Cólico/metabolismo , Masculino
11.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659027

RESUMEN

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Asunto(s)
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Administración Oral , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/inmunología , Vacunación , COVID-19/prevención & control , Ingeniería Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas
12.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38477571

RESUMEN

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Asunto(s)
Bacillus , Histidina , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Histidina/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica
13.
Anaerobe ; 87: 102839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552896

RESUMEN

Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. Their prevalence in diverse ecosystems requires a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs and as commensals or infecting pathogens in human and animal populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.


Asunto(s)
Infecciones por Clostridium , Salud Única , Humanos , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/epidemiología , Animales , Clostridium/genética , Clostridium/aislamiento & purificación , Clostridium/clasificación , Brotes de Enfermedades/prevención & control , Genómica/métodos , Toxinas Bacterianas/genética
14.
Appl Environ Microbiol ; 90(4): e0222323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38497645

RESUMEN

An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-ß-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0-9.0, with optimum temperature at 65°C, and a more than 7 days' half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s-1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer. IMPORTANCE: The genome of Clostridium boliviensis strain E-1 encodes a number of hypothetical enzymes, annotated as glycoside hydrolase-like but not classified in the Carbohydrate Active Enzyme Database (CAZy). A novel thermostable GH43-like enzyme is here characterized as an endo-ß-xylanase of interest in the production of prebiotic xylooligosaccharides (XOs) from different xylan sources. CbE1Xyn43-l is a two-domain enzyme composed of a catalytic GH43-l domain and a CBM6 domain, producing xylotriose as main XO product. The enzyme has homologs in many related Clostridium strains which may indicate a similar function and be a previously unknown type of endo-xylanase in this evolutionary lineage of microorganisms.


Asunto(s)
Glucuronatos , Glicósido Hidrolasas , Oligosacáridos , Xilanos , Xilanos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato , Clostridium/genética , Clostridium/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Hidrólisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
15.
Mol Diagn Ther ; 28(2): 141-151, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302842

RESUMEN

Necrosis is a common feature of solid tumours that offers a unique opportunity for targeted cancer therapy as it is absent from normal healthy tissues. Tumour necrosis provides an ideal environment for germination of the anaerobic bacterium Clostridium from endospores, resulting in tumour-specific colonisation. Two main species, Clostridium novyi-NT and Clostridium sporogenes, are at the forefront of this therapy, showing promise in preclinical models. However, anti-tumour activity is modest when used as a single agent, encouraging development of Clostridium as a tumour-selective gene delivery system. Various methods, such as allele-coupled exchange and CRISPR-cas9 technology, can facilitate the genetic modification of Clostridium, allowing chromosomal integration of transgenes to ensure long-term stability of expression. Strains of Clostridium can be engineered to express prodrug-activating enzymes, resulting in the generation of active drug selectively in the tumour microenvironment (a concept termed Clostridium-directed enzyme prodrug therapy). More recently, Clostridium strains have been investigated in the context of cancer immunotherapy, either in combination with immune checkpoint inhibitors or with engineered strains expressing immunomodulatory molecules such as IL-2 and TNF-α. Localised expression of these molecules using tumour-targeting Clostridium strains has the potential to improve delivery and reduce systemic toxicity. In summary, Clostridium species represent a promising platform for cancer therapy, with potential for localised gene delivery and immunomodulation selectively within the tumour microenvironment. The ongoing clinical progress being made with C. novyi-NT, in addition to developments in genetic modification techniques and non-invasive imaging capabilities, are expected to further progress Clostridium as an option for cancer treatment.


Asunto(s)
Neoplasias , Profármacos , Humanos , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Neoplasias/genética , Neoplasias/terapia , Clostridium/genética , Clostridium/metabolismo , Profármacos/metabolismo , Técnicas de Transferencia de Gen , Necrosis , Microambiente Tumoral
16.
Microb Cell Fact ; 23(1): 6, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172811

RESUMEN

BACKGROUND: Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS: We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMß1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS: The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Edición Génica , Clostridium/genética , Clostridium/metabolismo , Ingeniería Metabólica
17.
Antonie Van Leeuwenhoek ; 117(1): 24, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217723

RESUMEN

A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).


Asunto(s)
Respiraderos Hidrotermales , Respiraderos Hidrotermales/microbiología , ADN Bacteriano/genética , ADN Bacteriano/química , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Bacterias Anaerobias/genética , Firmicutes , Clostridium/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
18.
mBio ; 15(2): e0313323, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214507

RESUMEN

Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated C. acetobutylicum cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying C. ljungdahlii strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid C. acetobutylicum/C. ljungdahlii cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of C. acetobutylicum and C. ljungdahlii undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type C. acetobutylicum which acquired the erythromycin resistance (erm) gene from the C. ljungdahlii strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid C. acetobutylicum/C. ljungdahlii cells displaying hybrid DNA-methylation patterns.


Asunto(s)
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Técnicas de Cocultivo , Fusión Celular , Clostridium/genética , ADN/metabolismo , ARN/metabolismo
19.
J Antimicrob Chemother ; 79(2): 271-279, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084883

RESUMEN

BACKGROUND: Clostridium neonatale was isolated during an outbreak of neonatal necrotizing enterocolitis (NEC) in 2002. C. neonatale was validated as a new species within the genus Clostridium sensu stricto in 2018. In the present study, we evaluated the antimicrobial susceptibility, genetic determinants of resistance, and phylogenetic relationships of a collection of clinical isolates of C. neonatale. METHODS: C. neonatale strains (n = 68) were isolated from the stools of preterm neonates who either developed NEC or were asymptomatic carriers of C. neonatale in different periods and in different hospitals. Antimicrobial susceptibility was determined by the disc diffusion method. The MICs of clindamycin, cefotaxime and tetracycline were determined. Genetic determinants of resistance were screened by PCR (n = 68) and WGS (n = 35). Genotyping of the isolates was performed by MLST. RESULTS: Antimicrobial resistance was found to clindamycin (n = 24; 35%), cefotaxime (n = 7; 10%) and tetracycline (n = 1; 1%). One clindamycin-resistant isolate carried erm(B) by PCR. In addition, one isolate carrying tet(M) was tetracycline resistant (MIC = 16 mg/L) and 44 isolates carrying either tet(O), tet(32) or tet(M) were tetracycline susceptible (MICs < 16 mg/L). MLST showed that ST2 and ST15 were significantly associated with tet(32) (P < 0.0001) and tet(O) (P < 0.0001), respectively. From WGS, we identified aph(3')-IIa and blaTEM-116 genes and a blaCBP-1-like gene. CONCLUSIONS: C. neonatale is susceptible to anti-anaerobic molecules but resistant to clindamycin, cefotaxime and tetracycline. Genes encoding tetracycline ribosomal protection, macrolide-lincosamide-streptogramin B rRNA methyltransferase, aminoglycoside 3'-phosphotransferase and ß-lactamases have been identified in genomic regions flanked by mobile genetic elements.


Asunto(s)
Clindamicina , Farmacorresistencia Bacteriana , Recién Nacido , Humanos , Clindamicina/farmacología , Genotipo , Tipificación de Secuencias Multilocus , Filogenia , Estudios Retrospectivos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Tetraciclina/farmacología , Clostridium/genética , Cefotaxima/farmacología , Predisposición Genética a la Enfermedad , Pruebas de Sensibilidad Microbiana
20.
Biotechnol J ; 19(1): e2300161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818934

RESUMEN

Clostridium is a genus of gram-positive obligate anaerobic bacteria. Some species of Clostridium, including Clostridium sporogenes, may be of use in bacteria-mediated cancer therapy. Spores of Clostridium are inert in healthy normoxic tissue but germinate when in the hypoxic regions of solid tumors, causing tumor regression. However, such treatments fail to completely eradicate tumors partly because of higher oxygen levels at the tumor's outer rim. In this study, we demonstrate that a degree of aerotolerance can be introduced to C. sporogenes by transfer of the noxA gene from Clostridium aminovalericum. NoxA is a water-forming NADH oxidase enzyme, and so has no detrimental effect on cell viability. In addition to its potential in cancer treatment, the noxA-expressing strain described here could be used to alleviate challenges related to oxygen sensitivity of C. sporogenes in biomanufacturing.


Asunto(s)
Clostridium botulinum , Neoplasias , Humanos , Clostridium/genética , Clostridium/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA