Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
1.
Sci Rep ; 14(1): 11228, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755187

RESUMEN

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Asunto(s)
Antifúngicos , Endófitos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Antifúngicos/farmacología , Antifúngicos/química , Endófitos/metabolismo , Endófitos/química , Pruebas de Sensibilidad Microbiana , Colletotrichum/efectos de los fármacos , Hongos/efectos de los fármacos , Alternaria/efectos de los fármacos , Rhizoctonia/efectos de los fármacos , Humanos , Candida/efectos de los fármacos
2.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724454

RESUMEN

AIMS: Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. METHODS AND RESULTS: Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17-0253, MFLUCC 17-0257, and MFLUCC 17-0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17-0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17-0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17-0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. CONCLUSION: Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17-0253 were obtained.


Asunto(s)
Colletotrichum , Filogenia , Colletotrichum/genética , Tailandia , Ascomicetos/genética , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico , ADN de Hongos/genética , Genoma Fúngico , Pueblos del Sudeste Asiático
3.
Fungal Biol ; 128(3): 1780-1789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796262

RESUMEN

Anthracnose caused by Colletotrichum is the most severe and widely occurring cashew disease in Brazil. Colletotrichum species are commonly found as pathogens, endophytes and occasionally as saprophytes in a wide range of hosts. The endophytic species associated with cashew trees are poorly studied. In this study, we report the Colletotrichum endophytic species associated with cashew trees in two locations in the state of Pernambuco, their prevalence in different plant organs (leaves, veins, branches and inflorescences), and compare the species in terms of pathogenicity and aggressiveness using different inoculation methods (wounded × unwounded). Six species of Colletotrichum were identified according to multilocus phylogenetic analyses, including Colletotrichum asianum, Colletotrichum chrysophilum, Colletotrichum karsti, Colletotrichum siamense, Colletotrichum theobromicola, and Colletotrichum tropicale. There were differences in the percentage of isolation in relation to the prevalence of colonized tissues and collection locations. C. tropicale was the prevalent species in both geographic areas and plant tissues collected, with no pattern of distribution of species between areas and plant tissues. All isolates were pathogenic in injured tissues of cashew plants. The best method to test the pathogenicity of Colletotrichum species was utilizing the combination of leaves + presence of wounds + conidial suspension, as it better represents the natural infection process. C. siamense was the most aggressive species.


Asunto(s)
Anacardium , Colletotrichum , Endófitos , Filogenia , Enfermedades de las Plantas , Colletotrichum/genética , Colletotrichum/clasificación , Colletotrichum/aislamiento & purificación , Brasil , Anacardium/microbiología , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , ADN de Hongos/genética , Tipificación de Secuencias Multilocus
4.
Fungal Biol ; 128(3): 1771-1779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796261

RESUMEN

Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), ß-tub (ß-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and ß-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.


Asunto(s)
Colletotrichum , Phaseolus , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Colletotrichum/genética , Phaseolus/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Enfermedades de las Plantas/microbiología , Perfilación de la Expresión Génica , Genes Fúngicos
5.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771491

RESUMEN

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Regulación de la Expresión Génica de las Plantas , Pelargonium , Hojas de la Planta , Plantas Modificadas Genéticamente , Pelargonium/genética , Fusarium/patogenicidad , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Aceites Volátiles/metabolismo , Aceites Volátiles/farmacología , Geranium/genética
6.
Sci Total Environ ; 934: 173297, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761953

RESUMEN

Co-incubation of plant growth promoting rhizobacteria (PGPRs) have been proposed as a potential alternative to pesticides for controlling fungal pathogens in crops, but their synergism mechanisms are not yet fully understood. In this study, combined use of Bacillus subtilis SL44 and Enterobacter hormaechei Wu15 could decrease the density of Colletotrichum gloeosporioides and Rhizoctonia solani and enhance the growth of beneficial bacteria on the mycelial surface, thereby mitigating disease severity. Meanwhile, PGPR application led to a reorganization of the rhizosphere microbial community through modulating its metabolites, such as extracellular polymeric substances and chitinase. These metabolites demonstrated positive effects on attracting and enhancing conventional periphery bacteria, inhibiting fungal pathogens and promoting soil health effectively. The improvement in the microbial community structure altered the trophic mode of soil fungal communities, effectively decreasing the proportion of saprotrophic soil and reducing fungal plant diseases. Certain combinations of PGPR have the potential to serve as precise instruments for managing plant pathogens.


Asunto(s)
Bacillus subtilis , Enterobacter , Enfermedades de las Plantas , Microbiología del Suelo , Enterobacter/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Rhizoctonia/fisiología , Colletotrichum/fisiología
7.
Theor Appl Genet ; 137(6): 127, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733416

RESUMEN

KEY MESSAGE: Quantitative trait locus analysis identified independent novel loci in cucumbers responsible for resistance to races 0 and 1 of the anthracnose fungal pathogen Colletotrichum orbiculare. Cucumbers have been reported to be vulnerable to Colletotrichum orbiculare, causing anthracnose disease with significant yield loss under favorable conditions. The deployment of a single recessive Cssgr gene in cucumber breeding for anthracnose resistance was effective until a recent report on high-virulent strains infecting cucumbers in Japan conquering the resistance. QTL mapping was conducted to identify the resistance loci in the cucumber accession Ban Kyuri (G100) against C. orbiculare strains 104-T and CcM-1 of pathogenic races 0 and 1, respectively. A single dominant locus An5 was detected in the disease resistance hotspot on chromosome 5 for resistance to 104-T. Resistance to CcM-1 was governed by three loci with additive effects located on chromosomes 2 (An2) and 1 (An1.1 and An1.2). Molecular markers were developed based on variant calling between the corresponding QTL regions in the de novo assembly of the G100 genome and the publicly available cucumber genomes. Multiple backcrossed populations were deployed to fine-map An5 locus and narrow the region to approximately 222 kbp. Accumulation of An2 and An1.1 alleles displayed an adequate resistance to CcM-1 strain. This study provides functional molecular markers for pyramiding resistance loci that confer sufficient resistance against anthracnose in cucumbers.


Asunto(s)
Mapeo Cromosómico , Colletotrichum , Cucumis sativus , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Cucumis sativus/microbiología , Cucumis sativus/genética , Colletotrichum/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Fenotipo , Ligamiento Genético , Genes de Plantas , Fitomejoramiento
8.
J Nat Prod ; 87(5): 1347-1357, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38701173

RESUMEN

A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a ß-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 µg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 µg/mL.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Pseudallescheria , Sesquiterpenos , Antifúngicos/farmacología , Antifúngicos/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Estructura Molecular , Colletotrichum/efectos de los fármacos , Fusarium/efectos de los fármacos , Cristalografía por Rayos X
9.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752540

RESUMEN

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Asunto(s)
Cumarinas , Fungicidas Industriales , Relación Estructura-Actividad Cuantitativa , Rhizoctonia , Succinato Deshidrogenasa , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Rhizoctonia/efectos de los fármacos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Colletotrichum/efectos de los fármacos , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrazinas/química , Hidrazinas/farmacología , Hidrazinas/síntesis química , Simulación del Acoplamiento Molecular , Halogenación , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química
10.
J Med Chem ; 67(10): 7954-7972, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38703119

RESUMEN

To discover potential sterol 14α-demethylase (CYP51) inhibitors, thirty-four unreported 4H-pyrano[3,2-c]pyridine derivatives were designed and synthesized. The assay results indicated that most compounds displayed significant fungicidal activity against Sclerotinia sclerotiorum, Colletotrichum lagenarium, Botrytis cinerea, Penicillium digitatum, and Fusarium oxysporum at 16 µg/mL. The half maximal effective concentration (EC50) values of compounds 7a, 7b, and 7f against B. cinerea were 0.326, 0.530, and 0.610, respectively. Namely, they had better antifungal activity than epoxiconazole (EC50 = 0.670 µg/mL). Meanwhile, their half maximal inhibitory concentration (IC50) values against CYP51 were 0.377, 0.611, and 0.748 µg/mL, respectively, representing that they also possessed better inhibitory activities than epoxiconazole (IC50 = 0.802 µg/mL). The fluorescent quenching tests of proteins showed that 7a and 7b had similar quenching patterns to epoxiconazole. The molecular dynamics simulations indicated that the binding free energy of 7a and epoxiconazole to CYP51 was -35.4 and -27.6 kcal/mol, respectively.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa , Antifúngicos , Diseño de Fármacos , Simulación de Dinámica Molecular , Piridinas , Esterol 14-Desmetilasa , Inhibidores de 14 alfa Desmetilasa/farmacología , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Piridinas/farmacología , Piridinas/síntesis química , Piridinas/química , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Fusarium/efectos de los fármacos , Penicillium , Ascomicetos/efectos de los fármacos , Colletotrichum/efectos de los fármacos , Botrytis/efectos de los fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular
11.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771934

RESUMEN

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Asunto(s)
Carica , Colletotrichum , Eugenol , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Triazoles , Colletotrichum/efectos de los fármacos , Eugenol/farmacología , Eugenol/química , Carica/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Relación Estructura-Actividad , Diseño de Fármacos , Proteínas Fúngicas/química , Estructura Molecular
12.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38802124

RESUMEN

AIMS: Anthracnose caused by Colletotrichum species is one of the most devastating diseases of fruits and crops. We isolated and identified an antifungal compound from the mushroom Coprinus comatus and investigated its inhibitory potential against anthracnose disease-causing fungi with the goal of discovering natural products that can suppress anthracnose-caused plant disease. METHODS AND RESULTS: The culture filtrate of C. comatus was subjected to a bioassay-guided isolation of antifungal compounds. The active compound was identified as orsellinaldehyde (2,4-dihydroxy-6-methylbenzaldehyde) based on mass spectroscopy and nuclear magnetic resonance analyses. Orsellinaldehyde displayed broad-spectrum inhibitory activity against different plant pathogenic fungi. Among the tested Colletotrichum species, it exhibited the lowest IC50 values on conidial germination and germ tube elongation of Colletotrichum orbiculare. The compound also showed remarkable inhibitory activity against Colletotrichum gloeosporiodes. The staining of Colletotrichum conidia with fluorescein diacetate and propidium iodide demonstrated that the compound is fungicidal. The postharvest in-vivo detached fruit assay indicated that orsellinaldehyde suppressed anthracnose lesion symptoms on mango and cucumber fruits caused by C. gloeosporioides and C. orbiculare, respectively. CONCLUSIONS: Orsellinaldehyde was identified as a potent antifungal compound from the culture filtrate of C. comatus. The inhibitory and fungicidal activities of orsellinaldehyde against different Colletotrichum species indicate its potential as a fungicide for protecting various fruits against anthracnose disease-causing fungi.


Asunto(s)
Colletotrichum , Coprinus , Enfermedades de las Plantas , Colletotrichum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Benzaldehídos/farmacología , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Esporas Fúngicas/efectos de los fármacos
13.
Phytochemistry ; 222: 114078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574958

RESUMEN

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Asunto(s)
Alternaria , Ascomicetos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Humanos , Ascomicetos/química , Chlorocebus aethiops , Alternaria/química , Células Vero , Mycobacterium tuberculosis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacillus cereus/efectos de los fármacos , Animales , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Colletotrichum/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Relación Estructura-Actividad , Células MCF-7 , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Relación Dosis-Respuesta a Droga
14.
Sci Rep ; 14(1): 9374, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653777

RESUMEN

Colletotrichum is an important plant pathogenic fungi that causes anthracnose/-twister disease in onion. This disease was prevalent in the monsoon season from August to November months and the symptoms were observed in most of the fields. This study aimed to investigate the pathogenicity and cumulative effect, if any of Colletotrichum gloeosporioides and Fusarium acutatum. The pot experiment was laid out to identify the cause responsible for inciting anthracnose-twister disease, whether the Colletotrichum or Fusarium or both, or the interaction of pathogens and GA3. The results of the pathogenicity test confirmed that C. gloeosporioides and F. acutatum are both pathogenic. C. gloeosporioides caused twisting symptoms independently, while F.acutatum independently caused only neck elongation. The independent application of GA3 did not produce any symptoms, however, increased the plant height. The combined treatment of C. gloeosporioides and F. acutatum caused twisting, which enhanced upon interaction with GA3 application giving synergistic effect. The acervuli were found in lesions infected with C. gloeosporioides after 8 days of inoculation on the neck and leaf blades. Symptoms were not observed in untreated control plants. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants.


Asunto(s)
Colletotrichum , Fusarium , Cebollas , Enfermedades de las Plantas , Colletotrichum/patogenicidad , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Cebollas/microbiología
15.
Mol Plant Pathol ; 25(4): e13454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619507

RESUMEN

Apple Glomerella leaf spot (GLS) is an emerging fungal disease caused by Colletotrichum fructicola and other Colletotrichum species. These species are polyphyletic and it is currently unknown how these pathogens convergently evolved to infect apple. We generated chromosome-level genome assemblies of a GLS-adapted isolate and a non-adapted isolate in C. fructicola using long-read sequencing. Additionally, we resequenced 17 C. fructicola and C. aenigma isolates varying in GLS pathogenicity using short-read sequencing. Genome comparisons revealed a conserved bipartite genome architecture involving minichromosomes (accessory chromosomes) shared by C. fructicola and other closely related species within the C. gloeosporioides species complex. Moreover, two repeat-rich genomic regions (1.61 Mb in total) were specifically conserved among GLS-pathogenic isolates in C. fructicola and C. aenigma. Single-gene deletion of 10 accessory genes within the GLS-specific regions of C. fructicola identified three that were essential for GLS pathogenicity. These genes encoded a putative non-ribosomal peptide synthetase, a flavin-binding monooxygenase and a small protein with unknown function. These results highlight the crucial role accessory genes play in the evolution of Colletotrichum pathogenicity and imply the significance of an unidentified secondary metabolite in GLS pathogenesis.


Asunto(s)
Colletotrichum , Fabaceae , Malus , Phyllachorales , Colletotrichum/genética , Virulencia/genética , Genómica
16.
Food Chem ; 450: 139299, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613962

RESUMEN

Anthracnose, the most critical disease affecting olive fruits, is caused by Colletotrichum species. While developing olive fruits are immune to the pathogen regardless of the cultivar, the resistance level varies once the fruit ripens. The defense mechanisms responsible for this difference in resistance are not well understood. To explore this, we analyzed the phenolic metabolic pathways occurring in olive fruits and their susceptibility to the pathogen during ripening in two resistant cultivars ('Empeltre' and 'Frantoio') and two susceptible cultivars ('Hojiblanca' and 'Picudo'). Overall, resistant cultivars induced the synthesis of aldehydic and demethylated forms of phenols, which highly inhibited fungal spore germination. In contrast, susceptible cultivars promoted the synthesis of hydroxytyrosol 4-O-glucoside during ripening, a compound with no antifungal effect. This study showed that the distinct phenolic profiles between resistant and susceptible cultivars play a key role in determining olive fruit resistance to Colletotrichum species.


Asunto(s)
Colletotrichum , Frutas , Olea , Fenoles , Enfermedades de las Plantas , Olea/microbiología , Olea/química , Olea/metabolismo , Colletotrichum/crecimiento & desarrollo , Fenoles/metabolismo , Fenoles/química , Frutas/microbiología , Frutas/química , Frutas/metabolismo , Enfermedades de las Plantas/microbiología
17.
BMC Plant Biol ; 24(1): 339, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671375

RESUMEN

BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Inmunidad de la Planta , Zea mays , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Zea mays/inmunología , Zea mays/microbiología
18.
Int J Biol Macromol ; 267(Pt 1): 131185, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565360

RESUMEN

Sustainable poly(butylene succinate) (PBS) films incorporating lignin nanoparticles (LN) and trans-cinnamaldehyde (CN) have been developed to preserve mango freshness and provide food safety. PBS/LN, PBS/CN, and PBS/LN/CN composite films were produced by blown film melt extrusion. This study investigated the effect of CN-LN on the CN remaining content, thermal, mechanical, and barrier properties, diffusion coefficient, and antifungal activity of PBS films both in vitro and in vivo. Results showed that LN in the PBS/LN/CN composite film contained more CN than in the PBS/CN film. The compatibility of CN-LN with PBS produced homogeneous surfaces with enhanced barrier properties. PBS/LN/CN composite films demonstrated superior antifungal efficacy, inhibiting the growth of Colletotrichum gloeosporioides and preserving mango quality during storage. Results suggested that incorporating LN into PBS composite films prolonged the sustained release of antifungal agents, thereby inhibiting microbial growth and extending the shelf life of mangoes. Development of PBS/LN/CN composite films is a beneficial step toward reducing food waste and enhancing food safety.


Asunto(s)
Acroleína , Acroleína/análogos & derivados , Antifúngicos , Butileno Glicoles , Colletotrichum , Embalaje de Alimentos , Lignina , Mangifera , Nanopartículas , Antifúngicos/farmacología , Antifúngicos/química , Acroleína/química , Acroleína/farmacología , Mangifera/química , Lignina/química , Lignina/farmacología , Embalaje de Alimentos/métodos , Colletotrichum/efectos de los fármacos , Nanopartículas/química , Polímeros/química
19.
Mol Biol Rep ; 51(1): 557, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643317

RESUMEN

BACKGROUND: Post-harvest anthracnose (PHA) of mango is a devastating disease, which results in huge loss to mango producers and importers. Various species of PHA, diverse pathogenicity, and different resistance towards fungicides make it essential to evaluate the pathogen taxonomic status and biological characterization. METHODS AND RESULTS: Two strains DM-1 and DM-2 isolated from the fruit of DaQing mango from Vietnam were identified as Colletotrichum fructicola and C. asianum respectively, based on the morphological features, along with the phylogenetic tree of ITS and ApMat combined sequences. The growth status of different Colletotrichum strains under different conditions was analyzed to reveal the biological characteristics. The optimum growth temperature of DM-1 and DM-2 was 28 °C and mycelia grew rapidly in the dark. Both strains could grow in media with pH 4-11, while the optimum pH value was 6. Maltose and soluble starch were the most suitable carbon source for DM-1 and DM-2 respectively, and the peptone was the most suitable nitrogen source for both strains. The lethal temperatures were recorded as 55 °C 5 min for DM-1, and 50 °C 10 min for DM-2. CONCLUSIONS: To the best of our knowledge, it is the first study reporting the identification of the pathogens: C. fructicola and C. asianum responsible for postharvest fruit anthracnose of mango in Vietnam.


Asunto(s)
Colletotrichum , Mangifera , Mangifera/microbiología , Filogenia , Vietnam , Enfermedades de las Plantas/microbiología
20.
Microbiol Res ; 284: 127732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677265

RESUMEN

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Asunto(s)
Carboxiliasas , Colletotrichum , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Enfermedades de las Plantas , Colletotrichum/genética , Colletotrichum/efectos de los fármacos , Colletotrichum/patogenicidad , Colletotrichum/enzimología , Colletotrichum/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA