Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
BMC Plant Biol ; 24(1): 653, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987678

RESUMEN

BACKGROUND: Walnut anthracnose caused by Colletotrichum gloeosporioides seriously endangers the yield and quality of walnut, and has now become a catastrophic disease in the walnut industry. Therefore, understanding both pathogen invasion mechanisms and host response processes is crucial to defense against C. gloeosporioides infection. RESULTS: Here, we investigated the mechanisms of interaction between walnut fruits (anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts) and C. gloeosporioides at three infection time points (24hpi, 48hpi, and 72hpi) using a high-resolution time series dual transcriptomic analysis, characterizing the arms race between walnut and C. gloeosporioides. A total of 20,780 and 6670 differentially expressed genes (DEGs) were identified in walnut and C. gloeosporioides against 24hpi, respectively. Generous DEGs in walnut exhibited opposite expression patterns between F26 and F423, which indicated that different resistant materials exhibited different transcriptional responses to C. gloeosporioides during the infection process. KEGG functional enrichment analysis indicated that F26 displayed a broader response to C. gloeosporioides than F423. Meanwhile, the functional analysis of the C. gloeosporioides transcriptome was conducted and found that PHI, SignalP, CAZy, TCDB genes, the Fungal Zn (2)-Cys (6) binuclear cluster domain (PF00172.19) and the Cytochrome P450 (PF00067.23) were largely prominent in F26 fruit. These results suggested that C. gloeosporioides secreted some type of effector proteins in walnut fruit and appeared a different behavior based on the developmental stage of the walnut. CONCLUSIONS: Our present results shed light on the arms race process by which C. gloeosporioides attacked host and walnut against pathogen infection, laying the foundation for the green prevention of walnut anthracnose.


Asunto(s)
Colletotrichum , Juglans , Enfermedades de las Plantas , Juglans/microbiología , Juglans/genética , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , RNA-Seq , Frutas/microbiología , Frutas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Resistencia a la Enfermedad/genética
2.
BMC Genomics ; 25(1): 677, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977981

RESUMEN

BACKGROUND: Sorghum anthracnose is a major disease that hampers the productivity of the crop globally. The disease is caused by the hemibiotrophic fungal pathogen Colletotrichum sublineola. The identification of anthracnose-resistant sorghum genotypes, defining resistance loci and the underlying genes, and their introgression into adapted cultivars are crucial for enhancing productivity. In this study, we conducted field experiments on 358 diverse accessions of Ethiopian sorghum. Quantitative resistance to anthracnose was evaluated at locations characterized by a heavy natural infestation that is suitable for disease resistance screening. RESULTS: The field-based screening identified 53 accessions that were resistant across locations, while 213 accessions exhibited variable resistance against local pathotypes. Genome-wide association analysis (GWAS) was performed using disease response scores on 329 accessions and 83,861 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS). We identified 38 loci significantly associated with anthracnose resistance. Interestingly, a subset of these loci harbor genes encoding receptor-like kinases (RLK), nucleotide-binding leucine-rich repeats (NLRs), stress-induced antifungal tyrosine kinase that have been previously implicated in disease resistance. A SNP on chromosome 4 (S04_66140995) and two SNPs on chromosome 2 (S02_75784037, S02_2031925), localized with-in the coding region of genes that encode a putative stress-induced antifungal kinase, an F-Box protein, and Xa21-binding RLK that were strongly associated with anthracnose resistance. We also identified highly significant associations between anthracnose resistance and three SNPs linked to genes (Sobic.002G058400, Sobic.008G156600, Sobic.005G033400) encoding an orthologue of the widely known NLR protein (RPM1), Leucine Rich Repeat family protein, and Heavy Metal Associated domain-containing protein, respectively. Other SNPs linked to predicted immune response genes were also significantly associated with anthracnose resistance. CONCLUSIONS: The sorghum germplasm collections used in the present study are genetically diverse. They harbor potentially useful, yet undiscovered, alleles for anthracnose resistance. This is supported by the identification of novel loci that are enriched for disease resistance regulators such as NLRs, LRKs, Xa21-binding LRK, and antifungal proteins. The genotypic data available for these accessions offer a valuable resource for sorghum breeders to effectively improve the crop. The genomic regions and candidate genes identified can be used to design markers for molecular breeding of sorghum diseases resistance.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sorghum , Sorghum/genética , Sorghum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Genotipo , Etiopía , Sitios de Carácter Cuantitativo
3.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937683

RESUMEN

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Pyrus/genética , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
4.
J Plant Physiol ; 299: 154277, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843655

RESUMEN

Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in 'GL-3' plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in 'GL-3' plants. Further analysis indicated that the content of phenolics and chitinase and ß-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in 'GL-3' plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Malus , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Malus/genética , Malus/microbiología , Malus/metabolismo , Malus/inmunología , Colletotrichum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
5.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771491

RESUMEN

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Regulación de la Expresión Génica de las Plantas , Pelargonium , Hojas de la Planta , Plantas Modificadas Genéticamente , Pelargonium/genética , Fusarium/patogenicidad , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Aceites Volátiles/metabolismo , Aceites Volátiles/farmacología , Geranium/genética
6.
Sci Total Environ ; 934: 173297, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761953

RESUMEN

Co-incubation of plant growth promoting rhizobacteria (PGPRs) have been proposed as a potential alternative to pesticides for controlling fungal pathogens in crops, but their synergism mechanisms are not yet fully understood. In this study, combined use of Bacillus subtilis SL44 and Enterobacter hormaechei Wu15 could decrease the density of Colletotrichum gloeosporioides and Rhizoctonia solani and enhance the growth of beneficial bacteria on the mycelial surface, thereby mitigating disease severity. Meanwhile, PGPR application led to a reorganization of the rhizosphere microbial community through modulating its metabolites, such as extracellular polymeric substances and chitinase. These metabolites demonstrated positive effects on attracting and enhancing conventional periphery bacteria, inhibiting fungal pathogens and promoting soil health effectively. The improvement in the microbial community structure altered the trophic mode of soil fungal communities, effectively decreasing the proportion of saprotrophic soil and reducing fungal plant diseases. Certain combinations of PGPR have the potential to serve as precise instruments for managing plant pathogens.


Asunto(s)
Bacillus subtilis , Enterobacter , Enfermedades de las Plantas , Microbiología del Suelo , Enterobacter/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Rhizoctonia/fisiología , Colletotrichum/fisiología
7.
Plant Cell Environ ; 47(8): 3111-3131, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686847

RESUMEN

In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Zea mays , Zea mays/genética , Zea mays/enzimología , Zea mays/microbiología , Ácido Salicílico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Colletotrichum/fisiología , Cinética , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/microbiología , Gentisatos/metabolismo , Filogenia , Quercetina/metabolismo , Hidroxibenzoatos
8.
Plant Dis ; 108(7): 1976-1981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433111

RESUMEN

Anthracnose, caused by Colletotrichum spp., is a common disease of Camellia oleifera. In this study, a Bacillus amyloliquefaciens strain, GZY63, was isolated from fruit of the anthracnose-resistant cultivar of Ca. oleifera "Ganzhouyou7." Plate confrontation assays and field experiments demonstrated the strong inhibitory effect of GZY63 on anthracnose, and this strain exhibited broad-spectrum resistance to nine pathogenic Colletotrichum spp. This strain shows potential as a fungicide alternative, but genetic information on this strain is critical for its optimal use. Combining Illumina and Nanopore sequencing, we assembled a high-quality circular genome of GZY63 that contained no plasmids. The GZY63 complete genome was approximately 3.93 Mb and had an average guanine-cytosine content of 46.5%. The genome comprised 4,024 predicted coding sequences and 12 types of gene clusters involved in secondary metabolite production. This genome information provides insights into the mechanism underlying the antagonistic impact of the GZY63 strain on anthracnose and its symbiotic relationship with Ca. oleifera.


Asunto(s)
Bacillus amyloliquefaciens , Camellia , Colletotrichum , Endófitos , Genoma Bacteriano , Enfermedades de las Plantas , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Colletotrichum/genética , Colletotrichum/fisiología , Camellia/microbiología , Endófitos/genética , Endófitos/fisiología , Endófitos/aislamiento & purificación , Genómica
9.
Phytopathology ; 114(6): 1320-1332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38385804

RESUMEN

Coffee fruit rot (CFR) is a well-known disease worldwide, mainly caused by Colletotrichum spp., the most important species being C. kahawae subsp. kahawae. In Puerto Rico, Colletotrichum spp. were identified as pathogens of coffee fruits. The coffee berry borer (CBB) was shown to be a dispersal agent of these fungi, and interaction of Fusarium with Colletotrichum affecting coffee fruits was suggested. In this study, we demonstrated that Fusarium spp. also cause CFR in Puerto Rico. Fusarium spp. are part of the CBB mycobiota, and this insect is responsible for spreading the pathogens in coffee fields. We identified nine Fusarium spp. (F. nirenbergiae, F. bostrycoides, F. crassum, F. hengyangense, F. solani-melongenae, F. pseudocircinatum, F. meridionale, F. concolor, and F. lateritium) belonging to six Fusarium species complexes isolated from CBBs and from rotten coffee fruits. Pathogenicity tests showed that F. bostrycoides, F. lateritium, F. nirenbergiae, F. solani-melongenae, and F. pseudocircinatum were pathogens causing CFR on green coffee fruits. F. bostrycoides was the predominant species isolated from the CBB mycobiota and coffee fruits with symptoms of CFR, suggesting a close relationship between F. bostrycoides and the CBB. To our knowledge, this is the first report of F. bostrycoides, F. solani-melongenae, F. pseudocircinatum, and F. nirenbergiae causing CFR worldwide and the first report of F. lateritium causing CFR in Puerto Rico. Understanding the CFR disease complex and how the CBB contributes to dispersing different Fusarium spp. on coffee farms is important to implement disease management practices in Puerto Rico and in other coffee-producing countries.


Asunto(s)
Coffea , Frutas , Fusarium , Enfermedades de las Plantas , Fusarium/fisiología , Fusarium/aislamiento & purificación , Animales , Enfermedades de las Plantas/microbiología , Coffea/microbiología , Coffea/parasitología , Puerto Rico , Frutas/microbiología , Gorgojos/microbiología , Colletotrichum/fisiología , Interacciones Huésped-Patógeno
10.
Pest Manag Sci ; 80(7): 3459-3469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415946

RESUMEN

BACKGROUND: Anthracnose caused by species of Colletotrichum is the most important disease of avocado fruit. The quiescent infection develops in the field, hence, its control from the preharvest stage is necessary. The field application of microencapsulated Yamadazyma mexicana LPa14 could prevent the establishment of Colletotrichum gloeosporioides and reduce the losses in avocado production. This study aimed to evaluate the effectiveness of microencapsulated Y. mexicana applied in the field and postharvest for the anthracnose control in avocado, to evaluate the population dynamics of Y. mexicana in flowers and fruits and the effect of the yeast on the avocado quality. RESULTS: The concentrations of microencapsulated Y. mexicana after field application ranged from 4.58 to 6.35 log CFU g-1. The population of microencapsulated yeast in flowers and fruits was always higher than treatments with fresh cells. Preharvest application of fresh and microencapsulated Y. mexicana significantly reduced the severity of anthracnose by 71-80% and 84-96%, respectively, in avocado fruits stored at 25 °C. Moreover, at 6 °C and ripening at 25 °C, the fresh yeast reduced the severity by 87-90% and the microencapsulated yeast by 91-93%. However, yeast treatments applied in the field + postharvest under cool conditions were more effective in reducing 100% of anthracnose. Treatments did not negatively affect the quality parameters of the avocado fruits. CONCLUSION: Yamadazyma mexicana microencapsulated by electrospraying is a promising bioformulation for the management of anthracnose in avocados at preharvest and postharvest levels. Yamadazyma mexicana offers a new biological control solution for growers in avocado orchards. © 2024 Society of Chemical Industry.


Asunto(s)
Colletotrichum , Frutas , Persea , Enfermedades de las Plantas , Persea/microbiología , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Frutas/microbiología , Flores/microbiología , Control Biológico de Vectores
11.
Plant Cell Environ ; 47(6): 2074-2092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409861

RESUMEN

Plants trigger a robust immune response by activating massive transcriptome reprogramming through crosstalk between PTI and ETI. However, how PTI and ETI contribute to the quantitative or/and qualitative output of immunity and how they work together when both are being activated were unclear. In this study, we performed a comprehensive overview of pathogen-triggered transcriptomic reprogramming by analyzing temporal changes in the transcriptome up to 144 h after Colletotrichum gloeosporioides inoculated in Populus. Moreover, we constructed a hierarchical gene regulatory network of PagWRKY18 and its potential target genes to explore the underlying regulatory mechanisms of PagWRKY18 that are not yet clear. Interestingly, we confirmed that PagWRKY18 protein can directly bind the W-box elements in the promoter of a transmembrane leucine-rich repeat receptor-like kinase, PagSOBIR1 gene, to trigger PTI. At the same time, PagWRKY18 functions in disease tolerance by modulation of ROS homeostasis and induction of cell death via directly targeting PagGSTU7 and PagPR4 respectively. Furthermore, PagPR4 can interact with PagWRKY18 to inhibit the expression of PagPR4 genes, forming a negative feedback loop. Taken together, these results suggest that PagWRKY18 may be involved in regulating crosstalk between PTI and ETI to activate a robust immune response and maintain intracellular homeostasis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Populus , Populus/genética , Populus/inmunología , Populus/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Colletotrichum/fisiología , Transcriptoma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
12.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059663

RESUMEN

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Asunto(s)
Camellia sinensis , Colletotrichum , Ciclopentanos , Oxilipinas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Resistencia a la Enfermedad/genética , Colletotrichum/fisiología , Té/metabolismo , Transducción de Señal
13.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
14.
Plant Dis ; 108(6): 1526-1532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105460

RESUMEN

Two previously published ripe rot prediction models, DF2-NN and GH2-DT, were evaluated for fungicide application timing efficacy in Maryland vineyards. Both models utilize leaf wetness duration (LWD), temperature, and grape cluster phenological stages as model parameters. These three parameters were tracked throughout the 2021 to 2023 seasons in three vineyards. The fungicide efficacy trials started at the veraison phenological stage and included a nontreated control, a 12-day interval treatment, and two model-triggered treatments when risk predicted by the models crossed a threshold. The severity of ripe rot on the clusters in each treatment was assessed when the fruit were mature. Ripe rot severity in the nontreated controls was higher during seasons with more LWD and more precipitation. Days in which the models were triggered by the environmental conditions primarily coincided with precipitation events and lengthy LWDs. The model-triggered treatments never had significantly higher ripe rot severity than the 12-day interval treatment but had significantly lower severities than the nontreated control in most trials which had high ripe rot pressure. Furthermore, the model-triggered treatments resulted in fewer fungicide applications than the 12-day interval treatment on average. The DF2-NN model appeared to be more accurate and useful for ripe rot prediction and treatment than the GH2-DT model because it triggered fewer fungicide applications while reducing ripe rot. This model may be useful for improving or maintaining ripe rot control with fewer fungicide inputs, which may be beneficial for the environment and the reduction of fungicide resistance selection.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Enfermedades de las Plantas , Vitis , Fungicidas Industriales/farmacología , Vitis/microbiología , Colletotrichum/efectos de los fármacos , Colletotrichum/fisiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Maryland , Frutas/microbiología , Estaciones del Año
15.
Phytopathology ; 114(6): 1263-1275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38105219

RESUMEN

Leaves of Welsh onion (Allium fistulosum) are subject to various fungal diseases such as anthracnose (Colletotrichum species) and Stemphylium leaf blight (Stemphylium vesicarium). These diseases are the main biotic limitations to Welsh onion production in northern Taiwan. From 2018 to 2020, anthracnose symptoms were observed throughout Welsh onion fields in northern Taiwan, mainly the Sanxing area. In total, 33 strains of Colletotrichum species were isolated from diseased leaves, and major causative agents were identified based on a multilocus phylogenetic analysis using four genomic regions (act, tub2, gapdh, and internal transcribed spacer). Based on this phylogeny, Colletotrichum species causing anthracnose of Welsh onion were identified as C. spaethianum (C. spaethianum species complex) and C. circinans (C. dematium species complex) in the Sanxing area, northern Taiwan. To determine and compare the pathogenicity of each species, representative fungal strains of each species were inoculated on the cultivar 'Siao-Lyu' by spraying spore suspension onto the leaf surface. Welsh onion plants were susceptible to both species, but disease incidence and severity were higher in C. spaethianum. In total, 31 fungicides were tested to determine their efficacy in reducing mycelial growth and conidial germination of representative strains of C. spaethianum and C. circinans under laboratory conditions. Five fungicides-fluazinam, metiram, mancozeb, thiram, and dithianon-effectively reduced mycelial growth and spore germination in both C. spaethianum and C. circinans. In contrast, difenoconazole and trifloxystrobin + tebuconazole, which are commonly used in Welsh onion production in northern Taiwan, mainly the Sanxing area, were ineffective. These results serve as valuable insights for growers, enabling them to identify and address the emergence of anthracnose caused by C. spaethianum and C. circinans of Welsh onion, employing fungicides with diverse modes of action. The findings of this study support sustainable management of anthracnose in Sanxing, northern Taiwan, although further field tests of the fungicides are warranted.


Asunto(s)
Colletotrichum , Cebollas , Filogenia , Enfermedades de las Plantas , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Taiwán , Cebollas/microbiología , Hojas de la Planta/microbiología , Fungicidas Industriales/farmacología
16.
Plant J ; 118(1): 106-123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111157

RESUMEN

Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.


Asunto(s)
Colletotrichum , Sorghum , Haplotipos , Sorghum/genética , Variaciones en el Número de Copia de ADN , Fitomejoramiento , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Colletotrichum/fisiología , Resistencia a la Enfermedad/genética
17.
Sci Rep ; 11(1): 20525, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654899

RESUMEN

Anthracnose caused by the fungal pathogen C. sublineola is an economically important constraint on worldwide sorghum production. The most effective strategy to safeguard yield is through the introgression of resistance alleles. This requires elucidation of the genetic basis of the different resistance sources that have been identified. In this study, 223 recombinant inbred lines (RILs) derived from crossing anthracnose-differentials QL3 (96 RILs) and IS18760 (127 RILs) with the common susceptible parent PI609251 were evaluated at four field locations in the United States (Florida, Georgia, Texas, and Puerto Rico) for their anthracnose resistance response. Both RIL populations were highly susceptible to anthracnose in Florida and Georgia, while in Puerto Rico and Texas they were segregating for anthracnose resistance response. A genome scan using a composite linkage map of 982 single nucleotide polymorphisms (SNPs) detected two genomic regions of 4.31 and 0.85 Mb on chromosomes 4 and 8, respectively, that explained 10-27% of the phenotypic variation in Texas and Puerto Rico. In parallel, a subset of 43 RILs that contained 67% of the recombination events were evaluated against anthracnose pathotypes from Arkansas (2), Puerto Rico (2) and Texas (4) in the greenhouse. A genome scan showed that the 7.57 Mb region at the distal end of the short arm of chromosome 5 is associated with the resistance response against the pathotype AMP-048 from Arkansas. Comparative analysis identified the genomic region on chromosome 4 overlaps with an anthracnose resistance locus identified in another anthracnose-differential line, SC414-12E, indicating this genomic region is of interest for introgression in susceptible sorghum germplasm. Candidate gene analysis for the resistance locus on chromosome 5 identified an R-gene cluster that has high similarity to another R-gene cluster associated with anthracnose resistance on chromosome 9.


Asunto(s)
Colletotrichum/fisiología , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Sitios de Carácter Cuantitativo , Sorghum/genética , Enfermedades de las Plantas , Sorghum/inmunología , Sorghum/microbiología , Especificidad de la Especie
18.
Plant J ; 108(4): 1005-1019, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506685

RESUMEN

Arabidopsis non-host resistance against non-adapted fungal pathogens including Colletotrichum fungi consists of pre-invasive and post-invasive immune responses. Here we report that non-host resistance against non-adapted Colletotrichum spp. in Arabidopsis leaves requires CURLY LEAF (CLF), which is critical for leaf development, flowering and growth. Microscopic analysis of pathogen behavior revealed a requirement for CLF in both pre- and post-invasive non-host resistance. The loss of a functional SEPALLATA3 (SEP3) gene, ectopically expressed in clf mutant leaves, suppressed not only the defect of the clf plants in growth and leaf development but also a defect in non-host resistance against the non-adapted Colletotrichum tropicale. However, the ectopic overexpression of SEP3 in Arabidopsis wild-type leaves did not disrupt the non-host resistance. The expression of multiple plant defensin (PDF) genes that are involved in non-host resistance against C. tropicale was repressed in clf leaves. Moreover, the Octadecanoid-responsive Arabidopsis 59 (ORA59) gene, which is required for PDF expression, was also repressed in clf leaves. Notably, when SEP3 was overexpressed in the ora59 mutant background, C. tropicale produced clear lesions in the inoculated leaves, indicating an impairment in non-host resistance. Furthermore, ora59 plants overexpressing SEP3 exhibited a defect in leaf immunity to the adapted Colletotrichum higginsianum. Since the ora59 plants overexpressing SEP3 did not display obvious leaf curling or reduced growth, in contrast to the clf mutants, these results strongly suggest that concomitant SEP3 repression and ORA59 induction via CLF are required for Arabidopsis leaf immunity to Colletotrichum fungi, uncoupled from CLF's function in growth and leaf development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Colletotrichum/fisiología , Proteínas de Homeodominio/metabolismo , Enfermedades de las Plantas/inmunología , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Defensinas , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Mutación con Pérdida de Función , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Factores de Transcripción/genética
19.
Plant Mol Biol ; 107(1-2): 85-100, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34424501

RESUMEN

KEY MESSAGE: Phosphoglycerate Dehydrogenase 1 of the phosphorylated pathway of serine biosynthesis, active in heterotrophic plastids, is required for the synthesis of serine to enable plant growth at high rates of indolic glucosinolate biosynthesis. Plants have evolved effective strategies to defend against various types of pathogens. The synthesis of a multitude of specialized metabolites represents one effective approach to keep plant attackers in check. The synthesis of those defense compounds is cost intensive and requires extensive interaction with primary metabolism. However, how primary metabolism is adjusted to fulfill the requirements of specialized metabolism is still not completely resolved. Here, we studied the role of the phosphorylated pathway of serine biosynthesis (PPSB) for the synthesis of glucosinolates, the main class of defensive compounds in the model plant Arabidopsis thaliana. We show that major genes of the PPSB are co-expressed with genes required for the synthesis of tryptophan, the unique precursor for the formation of indolic glucosinolates (IG). Transcriptional and metabolic characterization of loss-of-function and dominant mutants of ALTERED TRYPTOPHAN1-like transcription factors revealed demand driven activation of PPSB genes by major regulators of IG biosynthesis. Trans-activation of PPSB promoters by ATR1/MYB34 transcription factor in cultured root cells confirmed this finding. The content of IGs were significantly reduced in plants compromised in the PPSB and these plants showed higher sensitivity against treatment with 5-methyl-tryptophan, a characteristic behavior of mutants impaired in IG biosynthesis. We further found that serine produced by the PPSB is required to enable plant growth under conditions of high demand for IG. In addition, PPSB-deficient plants lack the growth promoting effect resulting from interaction with the beneficial root-colonizing fungus Colletotrichum tofieldiae.


Asunto(s)
Arabidopsis/metabolismo , Colletotrichum/fisiología , Endófitos/fisiología , Glucosinolatos/biosíntesis , Indoles/metabolismo , Desarrollo de la Planta , Raíces de Plantas/microbiología , Serina/biosíntesis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fosforilación , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Triptófano/biosíntesis
20.
Mol Plant Pathol ; 22(7): 817-828, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951267

RESUMEN

In this study, we used virus-mediated gene silencing technology and found that the HSP17.4 gene-silenced cultivar Sweet Charlie plants were more susceptible to Colletotrichum gloeosporioides than the wild-type Sweet Charlie, and the level of infection was even higher than that of the susceptible cultivar Benihopp. The results of differential quantitative proteomics showed that after infection with the pathogen, the expression of the downstream response genes NPR1, TGA, and PR-1 of the salicylic acid (SA) signalling pathway was fully up-regulated in the wild-type Sweet Charlie, and the expression of the core transcription factor MYC2 of the jasmonic acid (JA) pathway was significantly down-regulated. The expression of the proteins encoded by these genes did not change significantly in the HSP17.4-silenced Sweet Charlie, indicating that the expression of HSP17.4 activated the up-regulation of downstream signals of SA and inhibited the JA signal pathway. The experiments that used SA, methyl jasmonate, and their inhibitors to treat plants provide additional evidence that the antagonism between SA and JA regulates the resistance of strawberry plants to C. gloeosporioides.


Asunto(s)
Colletotrichum/fisiología , Resistencia a la Enfermedad , Fragaria/genética , Proteínas de Choque Térmico/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Acetatos/metabolismo , Ciclopentanos/metabolismo , Fragaria/inmunología , Fragaria/microbiología , Proteínas de Choque Térmico/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA