Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Rep ; 48(11): 7067-7075, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34677711

RESUMEN

BACKGROUND: 3,17ß-hydroxysteroid dehydrogenase (3,17ß-HSD) is a key enzyme in the metabolic pathway for steroid compounds catabolism in Comamonas testosteroni. Tetracycline repressor (TetR) family, repressors existing in most microorganisms, may play key roles in regulating the expression of 3,17ß-HSD. Previous reports showed that three tetR genes are located in the contig58 of C. testosteroni ATCC 11996 (GenBank: AHIL01000049.1), among which the first tetR gene encoded a potential repressor of 3,17ß-HSD by sensing environmental signals. However, whether the other proposed tetR genes act as repressors of 3,17ß-HSD are still unknown. METHODS AND RESULTS: In the present study, we cloned the second tetR gene and analyzed the regulatory mechanism of the protein on 3,17ß-HSD using electrophoretic mobility shift assay (EMSA), gold nanoparticles (AuNPs)-based assay, and loss-of-function analysis. The results showed that the second tetR gene was 660-bp, encoding a 26 kD protein, which could regulate the expression of 3,17ß-HSD gene via binding to the conserved consensus sequences located 1100-bp upstream of the 3,17ß-HSD gene. Furthermore, the mutant strain of C. testosteroni with the second tetR gene knocked-out mutant expresses good biological genetic stability, and the expression of 3,17ß-HSD in the mutant strain is slightly higher than that in the wild type under testosterone induction. CONCLUSIONS: The second tetR gene acts as a negative regulator in 3,17ß-HSD expression, and the mutant has potential application in bioremediation of steroids contaminated environment.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Proteínas Bacterianas , Clonación Molecular , Comamonas testosteroni , Inhibidores Enzimáticos , Transactivadores , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Comamonas testosteroni/química , Comamonas testosteroni/genética , Comamonas testosteroni/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transactivadores/biosíntesis , Transactivadores/química , Transactivadores/genética
2.
Mol Microbiol ; 112(3): 906-917, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31177588

RESUMEN

Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Comamonas testosteroni/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/química , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Bacterianas/genética , Quimiotaxis , Ácido Cítrico/metabolismo , Comamonas testosteroni/química , Comamonas testosteroni/genética , Dimerización , Ligandos , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos
3.
Biomed Res Int ; 2019: 7127869, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31032360

RESUMEN

Natural enzyme mimics have attracted considerable attention due to leakage of enzymes and their easy denaturation during their storage and immobilization procedure. Here in this study, for the first time, a new iron oxide hydroxide, ferrihydrite - Fe1.44O0.32 (OH) 3.68 magnetic nanoparticles were synthesized by bacterial strain named Comamonas testosteroni. The characterization of the produced magnetic nanoparticles was confirmed by transmission electron microscopy (TEM), Fourier-transform spectroscopy (FTIR), X-ray diffraction (XRD), and magnetization hysteresis loops. Further, these extracted nanoparticles were proven to have biogenic magnetic behavior and to exhibit enhanced peroxidase-like activity. It is capable of catalyzing the oxidation of 3, 3', 5, 5'-Tetramethylbenzidine (TMB) by H2O2 to produce blue color (typical color reactions). Catalysis was examined to follow Michaelis-Menton kinetics and the good affinity to both H2O2 and TMB. The K m value of the Fe1.44O0.32 (OH) 3.68 with H2O2 and TMB as the substrate was 0.0775 and 0.0155 mM, respectively, which were lower than that of the natural enzyme (HRP). Experiments of electron spin resonance (ESR) spectroscopy proved that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. As a new peroxidase mimetic, the BMNPs were exhibited to offer a simple, sensitive, and selective colorimetric method for determination of H2O2 and glucose and efficiently catalyze the detection of glucose in real blood samples.


Asunto(s)
Comamonas testosteroni/química , Glucosa/química , Peróxido de Hidrógeno/química , Peroxidasa/química , Bencidinas/química , Biomimética , Técnicas Biosensibles , Catálisis , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/síntesis química , Compuestos Férricos/química , Compuestos Férricos/farmacología , Glucosa/aislamiento & purificación , Peróxido de Hidrógeno/aislamiento & purificación , Cinética , Nanopartículas de Magnetita , Microscopía Electrónica de Transmisión , Oxidación-Reducción/efectos de los fármacos , Peroxidasa/síntesis química , Peroxidasa/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Nat Commun ; 9(1): 1177, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563521

RESUMEN

Heat capacity changes are emerging as essential for explaining the temperature dependence of enzyme-catalysed reaction rates. This has important implications for enzyme kinetics, thermoadaptation and evolution, but the physical basis of these heat capacity changes is unknown. Here we show by a combination of experiment and simulation, for two quite distinct enzymes (dimeric ketosteroid isomerase and monomeric alpha-glucosidase), that the activation heat capacity change for the catalysed reaction can be predicted through atomistic molecular dynamics simulations. The simulations reveal subtle and surprising underlying dynamical changes: tightening of loops around the active site is observed, along with changes in energetic fluctuations across the whole enzyme including important contributions from oligomeric neighbours and domains distal to the active site. This has general implications for understanding enzyme catalysis and demonstrating a direct connection between functionally important microscopic dynamics and macroscopically measurable quantities.


Asunto(s)
Bacillus subtilis/química , Proteínas Bacterianas/química , Comamonas testosteroni/química , Esteroide Isomerasas/química , alfa-Glucosidasas/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Comamonas testosteroni/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , Especificidad por Sustrato , Termodinámica , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
5.
J Am Chem Soc ; 139(32): 11089-11095, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28719738

RESUMEN

Control of enzyme activity is fundamental to biology and represents a long-term goal in bioengineering and precision therapeutics. While several powerful molecular strategies have been developed, limitations remain in their generalizability and dynamic range. We demonstrate a control mechanism via separate small molecules that turn on the enzyme (activator) and turn off the activation (blocker). We show that a pocket created near the active site base of the enzyme ketosteriod isomerase (KSI) allows efficient and saturable base rescue when the enzyme's natural general base is removed. Binding a small molecule with similar properties but lacking general-base capability in this pocket shuts off rescue. The ability of small molecules to directly participate in and directly block catalysis may afford a broad controllable dynamic range. This approach may be amenable to numerous enzymes and to engineering and screening approaches to identify activators and blockers with strong, specific binding for engineering and therapeutic applications.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Comamonas testosteroni/enzimología , Pseudomonas putida/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Esteroide Isomerasas/metabolismo , Sitios de Unión/efectos de los fármacos , Comamonas testosteroni/química , Comamonas testosteroni/efectos de los fármacos , Comamonas testosteroni/genética , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Pseudomonas putida/química , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/genética , Bibliotecas de Moléculas Pequeñas/química , Esteroide Isomerasas/química , Esteroide Isomerasas/genética
6.
Biochemistry ; 56(4): 582-591, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28045505

RESUMEN

Kemp eliminases represent the most successful class of computationally designed enzymes, with rate accelerations of up to 109-fold relative to the rate of the same reaction in aqueous solution. Nevertheless, several other systems such as micelles, catalytic antibodies, and cavitands are known to accelerate the Kemp elimination by several orders of magnitude. We found that the naturally occurring enzyme ketosteroid isomerase (KSI) also catalyzes the Kemp elimination. Surprisingly, mutations of D38, the residue that acts as a general base for its natural substrate, produced variants that catalyze the Kemp elimination up to 7000-fold better than wild-type KSI does, and some of these variants accelerate the Kemp elimination more than the computationally designed Kemp eliminases. Analysis of the D38N general base KSI variant suggests that a different active site carboxylate residue, D99, performs the proton abstraction. Docking simulations and analysis of inhibition by active site binders suggest that the Kemp elimination takes place in the active site of KSI and that KSI uses the same catalytic strategies of the computationally designed enzymes. In agreement with prior observations, our results strengthen the conclusion that significant rate accelerations of the Kemp elimination can be achieved with very few, nonspecific interactions with the substrate if a suitable catalytic base is present in a hydrophobic environment. Computational design can fulfill these requirements, and the design of more complex and precise environments represents the next level of challenges for protein design.


Asunto(s)
Proteínas Bacterianas/química , Comamonas testosteroni/química , Liasas Intramoleculares/química , Cetosteroides/química , Oxazoles/química , Protones , Esteroide Isomerasas/química , Arginina/química , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Clonación Molecular , Comamonas testosteroni/enzimología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Liasas Intramoleculares/antagonistas & inhibidores , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Cetosteroides/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutación , Oxazoles/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esteroide Isomerasas/antagonistas & inhibidores , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , Relación Estructura-Actividad
7.
Microbiol Res ; 169(2-3): 148-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23972763

RESUMEN

The short-chain dehydrogenase/reductase (SDR) superfamily is a large and diverse group of genes with members found in all forms of life. Comamonas testosteroni (C. testosterone) ATCC11996 is a Gram-negative bacterium which can use steroids as carbon and energy source. In the present investigation, we found a novel SDR gene 7alpha-hydroxysteroid dehydrogenase (7α-HSD) which is located 11.9 kb upstream from hsdA with the same transcription orientation in the C. testosteroni genome. The open reading frame of this putative 7alpha-hydroxysteroid dehydrogenase gene consists of 771 bp and translates into a protein of 256 amino acids. Two consensus sequences of the SDR superfamily were found, an N-terminal Gly-X-X-X-Gly-X-Gly cofactor-binding motif and a Tyr-X-X-X-Lys segment (residues 161-165 in the 7α-HSD sequence) essential for catalytic activity of SDR proteins. To produce purified 7α-HSD protein, the 7α-HSD gene was cloned into plasmid p(ET-15b) and the over expressed protein was purified by His-tag sequence on metal chelate chromatography. To prove that 7α-HSD is involved in the metabolic pathway of steroid compounds, we constructed a 7α-HSD knock-out mutant of C. testosteroni. Compared to the wild type C. testosteroni, degradation of testosterone, estradiol and cholesterol were decreased in the 7α-HSD knock-out mutant. Furthermore, growth in the medium with testosterone, estradiol and cholesterol was impaired in 7α-HSD knock-out mutant. The results showed that 7α-HSD is involved in steroid degradation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Comamonas testosteroni/enzimología , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Comamonas testosteroni/química , Comamonas testosteroni/genética , Regulación Bacteriana de la Expresión Génica , Hidroxiesteroide Deshidrogenasas/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
8.
Rapid Commun Mass Spectrom ; 25(15): 2163-72, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21710596

RESUMEN

Preliminary measurements have been made of the volatile compounds emitted by the bacterium E. coli JM109 cultured in the commonly used media Dulbecco's modified Eagle's medium (DMEM) and lysogeny broth (LB) using selected ion flow tube mass spectrometry, SIFT-MS, as a step towards the real time, non-invasive monitoring of accidental infections of mammalian cell cultures. In one procedure, the culture medium alone and the E. coli cells/medium combination were held at 37 °C in bottles sealed with septa for a given time period, usually overnight, to allow the bacterium to proliferate, after which the captured headspace was analysed directly by SIFT-MS. Several compounds were seen to be produced by the E. coli cells that depended on the liquid medium used: when cultured in DMEM, copious amounts of ethanol, acetaldehyde and hydrogen sulphide were produced; in LB ammonia is the major volatile product. In a second procedure, to ensure aerobic conditions prevailed in the cell culture, selected volatile compounds were monitored by SIFT-MS in real time for several hours above the open-to-air E. coli/DMEM culture held at close to 37 °C. The temporal variations in the concentrations of some compounds, which reflect their production rates in the culture, indicate maxima. Thus, the maxima in the ethanol and acetaldehyde production are a reflection of the reduction of glucose from the DMEM by the vigorous E. coli cells and the maximum in the hydrogen sulphide level is an indication of the loss of the sulphur-bearing amino acids from the DMEM. Serendipitously, emissions from DMEM inadvertently infected with the bacterium C. testosteroni were observed when large quantities of ammonia were seen to be produced. The results of this preliminary study suggest that monitoring volatile compounds might assist in the early detection of bacterial infection in large-scale bioreactors.


Asunto(s)
Escherichia coli/metabolismo , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Comamonas testosteroni/química , Comamonas testosteroni/metabolismo , Medios de Cultivo , Escherichia coli/química , Escherichia coli/aislamiento & purificación
9.
Biodegradation ; 21(4): 593-602, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20119845

RESUMEN

A nicotinate dehydrogenase (NaDH) gene cluster was cloned from Comamonas testosteroni JA1. The enzyme, termed NaDH(JA1), is composed of 21, 82, and 46 kDa subunits, respectivley containing [2Fe2S], Mo(V) and cytochrome c domains. The recombinant NaDH(JA1) can catalyze the hydroxylation of nicotinate and 3-cyanopyridine. NaDH(JA1) protein exhibits 52.8% identity to the amino acid sequence of NaDH(KT2440) from P. putida KT2440. Sequence alignment analysis showed that the [2Fe2S] domain in NaDH(JA1) had a type II [2Fe-2S] motif and a type I [2Fe-2S] motif, while the same domain in NaDH(KT2440) had only a type II [2Fe-2S] motif. NaDH(KT2440) had an additional hypoxanthine dehydrogenase motif that NaDH(JA1) does not have. When the small unit of NaDH(JA1) was replaced by the small subunit from NaDH(KT2440), the hybrid protein was able to catalyze the hydroxylation of nicotinate, but lost the ability to catalyze hydroxylation of 3-cyanopyridine. In contrast, after replacement of the small subunit of NaDH(KT2440) with the small subunit from NaDH(JA1), the resulting hybrid protein NaDH(JAS+KTL) acquired the ability to hydroxylate 3-cyanopyridine. The subunits swap results indicate the [2Fe2S] motif determines the 3-cyanopyridine hydroxylation ability, which is evidently different from the previous belief that the Mo motif determines substrate specificity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clonación Molecular , Comamonas testosteroni/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Piridinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Comamonas testosteroni/química , Comamonas testosteroni/genética , Hidroxilación , Datos de Secuencia Molecular , Familia de Multigenes , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
10.
Artículo en Inglés | MEDLINE | ID: mdl-18678953

RESUMEN

The full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 was heterologously overexpressed in Escherichia coli, purified and stabilized under conditions that favoured its rapid crystallization using the microbatch-under-oil technique. The purified protein was highly crystallizable and two different crystal forms were readily obtained. However, only monoclinic crystals gave diffraction beyond 2 A and there was a slight variation in unit-cell parameters between crystals. The only other LysR-type regulator for which a full-length crystal form is available is CbnR, but no solution could be obtained when this was used as a model in molecular replacement. Mercury and xenon derivatives were therefore produced in order to phase the structure using a MIRAS approach.


Asunto(s)
Proteínas Bacterianas/química , Comamonas testosteroni/química , Factores de Transcripción/química , Cristalización , Cristalografía por Rayos X , Conformación Proteica
11.
J Pharm Biomed Anal ; 36(3): 429-36, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15522514

RESUMEN

Studies on the C-3 epimerization in (24R)-24,25-dihydroxyvitamin D(3) [24R,25(OH)(2)D(3)] were performed using hydroxysteroid dehydrogenases (HSDs). 3-Epi-24R,25(OH)(2)D(3) was formed from 24R,25(OH)(2)D(3) by the catalysis of 3alpha- or beta-HSD. These HSDs also catalyzed the C-3 epimerization in 3-epi-24R,25(OH)(2)D(3) to form 24R,25(OH)(2)D(3). 24R,25(OH)(2)D(3) and its C-3 epimer were separated by inclusion high-performance liquid chromatography using gamma-cyclodextrin (gamma-CD) as the mobile phase additive or a gamma-CD bonded chiral column. The product derived from the intermediate during the C-3 epimerization was isolated from the incubation specimens and identified as (7Z)-(24R)-24,25-dihydroxy-9,10-secocholesta-4,7,10(19)-trien-3-one by several instrumental analyses including (1)H-nuclear magnetic resonance spectrometry. The occurrence of this compound strongly proves that the formation of the C-3 epimer by HSD involves a dehydrogenation process. The present study suggests that HSDs may catalyze the C-3 epimerization of vitamin D compounds and modulate their concentrations and biological activities in animals and humans.


Asunto(s)
24,25-Dihidroxivitamina D 3/análisis , 24,25-Dihidroxivitamina D 3/química , Hidroxiesteroide Deshidrogenasas/análisis , 24,25-Dihidroxivitamina D 3/metabolismo , Catálisis , Comamonas testosteroni/química , Comamonas testosteroni/enzimología , Hidroxiesteroide Deshidrogenasas/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Estereoisomerismo
12.
Microbiology (Reading) ; 147(Pt 5): 1087-1094, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11320112

RESUMEN

The lipid A from Comamonas testosteroni has been isolated and its complete chemical structure determined [Iida, T., Haishima, Y., Tanaka, A., Nishijima, K., Saito, S. & Tanamoto, K. (1996). Eur J Biochem 237, 468-475]. In this work, the relationship between its chemical structure and biological activity was studied. The lipid A was highly homogeneous chemically and was characterized by the relatively short chain length (C(10)) of the 3-hydroxy fatty acid components directly bound to the glucosamine disaccharide backbone by either amide or ester linkages. The lipid A exhibited endotoxic activity in all of the assay systems tested (mitogenicity in mouse spleen cells; induction of tumour necrosis factor alpha release from both mouse peritoneal macrophages and mouse macrophage-like cell line J774-1, as well as from the human monocytic cell line THP-1; induction of nitric oxide release from J774-1 cells; Limulus gelation activity and lethal toxicity in galactosamine-sensitized mice) to the same extent as did 'Salmonella minnesota' lipid A or Escherichia coli LPS used as controls. The strong endotoxic activity of the C. testosteroni lipid A indicates that the composition of 3-hydroxydecanoic acid is not responsible for the low endotoxicity of the lipid A observed in members of the genus Rhodopseudomonas, as has previously been suggested. Furthermore, both the lack of a second acylation of the 3-hydroxy fatty acid attached at the 3' position, and the substitution of the hydroxyl group of the 3-hydroxy fatty acid attached at position 2, do not affect the manifestation of endotoxic activity or species specificity.


Asunto(s)
Comamonas testosteroni/química , Lípido A/toxicidad , Animales , Células Cultivadas , Femenino , Humanos , Lípido A/farmacología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitógenos/farmacología , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA