Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Virol ; 98(3): e0200623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334330

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE: Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Animales , Humanos , Chlorocebus aethiops , Virus de la Coriomeningitis Linfocítica/fisiología , Células Vero , Replicación Viral/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Proteína Coat de Complejo I
2.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281682

RESUMEN

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Proteínas Relacionadas con Receptor de LDL , Paraplejía Espástica Hereditaria , Animales , Humanos , Ratones , Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Células HeLa , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores de Superficie Celular , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
3.
Adv Biol Regul ; 87: 100945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642642

RESUMEN

Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/ß4/µ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (S. cerevisiae, C. elegans, D. melanogaster). However, zebrafish (Danio rerio) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, atg9a and map1lc3b. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Saccharomyces cerevisiae/genética
4.
Mol Biol Cell ; 33(12): ar102, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976706

RESUMEN

The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis, and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function, and transport via regulating the export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome buildup are highly reminiscent of those observed in Alzheimer's disease as well as in neurons modeling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4-deficient HSP. Additionally, our results also demonstrate the utility of the human i3Neuronal model system in investigating neuronal phenotypes observed in AP-4-deficient mice and/or the human AP-4 deficiency syndrome.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Paraplejía Espástica Hereditaria , Complejo 4 de Proteína Adaptadora/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo , Transporte de Proteínas , Paraplejía Espástica Hereditaria/metabolismo , Espastina/metabolismo , Red trans-Golgi/metabolismo
5.
Nat Commun ; 13(1): 1058, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217685

RESUMEN

The adaptor protein complex AP-4 mediates anterograde axonal transport and is essential for axon health. AP-4-deficient patients suffer from a severe neurodevelopmental and neurodegenerative disorder. Here we identify DAGLB (diacylglycerol lipase-beta), a key enzyme for generation of the endocannabinoid 2-AG (2-arachidonoylglycerol), as a cargo of AP-4 vesicles. During normal development, DAGLB is targeted to the axon, where 2-AG signalling drives axonal growth. We show that DAGLB accumulates at the trans-Golgi network of AP-4-deficient cells, that axonal DAGLB levels are reduced in neurons from a patient with AP-4 deficiency, and that 2-AG levels are reduced in the brains of AP-4 knockout mice. Importantly, we demonstrate that neurite growth defects of AP-4-deficient neurons are rescued by inhibition of MGLL (monoacylglycerol lipase), the enzyme responsible for 2-AG hydrolysis. Our study supports a new model for AP-4 deficiency syndrome in which axon growth defects arise through spatial dysregulation of endocannabinoid signalling.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Endocannabinoides , Neuronas , Complejo 4 de Proteína Adaptadora/metabolismo , Animales , Transporte Axonal , Axones/metabolismo , Endocannabinoides/metabolismo , Humanos , Ratones , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Neuronas/metabolismo
6.
Neurology ; 97(19): e1942-e1954, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34544818

RESUMEN

BACKGROUND AND OBJECTIVES: AP-4-associated hereditary spastic paraplegia (AP-4-HSP: SPG47, SPG50, SPG51, SPG52) is an emerging cause of childhood-onset hereditary spastic paraplegia and mimic of cerebral palsy. This study aims to define the spectrum of brain MRI findings in AP-4-HSP and to investigate radioclinical correlations. METHODS: We performed a systematic qualitative and quantitative analysis of 107 brain MRI studies from 76 individuals with genetically confirmed AP-4-HSP and correlation with clinical findings including surrogates of disease severity. RESULTS: We define AP-4-HSP as a disorder of gray and white matter and demonstrate that abnormal myelination is common and that metrics of reduced white matter volume correlate with severity of motor symptoms. We identify a common diagnostic imaging signature consisting of (1) a thin splenium of the corpus callosum, (2) an absent or thin anterior commissure, (3) characteristic signal abnormalities of the forceps minor ("ears of the grizzly sign"), and (4) periventricular white matter abnormalities. The presence of 2 or more of these findings has a sensitivity of ∼99% for detecting AP-4-HSP; the combination of all 4 is found in ∼45% of cases. Compared to other HSPs with a thin corpus callosum, the absent anterior commissure appears to be specific to AP-4-HSP. Our analysis identified a subset of patients with polymicrogyria, underscoring the role of AP-4 in early brain development. These patients displayed a higher prevalence of seizures and status epilepticus, many at a young age. DISCUSSION: Our findings define the MRI spectrum of AP-4-HSP, providing opportunities for early diagnosis, identification of individuals at risk for complications, and a window into the role of the AP-4 complex in brain development and neurodegeneration.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Paraplejía Espástica Hereditaria , Complejo 4 de Proteína Adaptadora/metabolismo , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/metabolismo
7.
Protein Sci ; 29(6): 1535-1549, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285480

RESUMEN

Genetic variation in the membrane trafficking adapter protein complex 4 (AP-4) can result in pathogenic neurological phenotypes including microencephaly, spastic paraplegias, epilepsy, and other developmental defects. We lack molecular mechanisms responsible for impaired AP-4 function arising from genetic variation, because AP-4 remains poorly understood structurally. Here, we analyze patterns of AP-4 genetic evolution and conservation to identify regions that are likely important for function and thus more susceptible to pathogenic variation. We map known variants onto an AP-4 homology model and predict the likelihood of pathogenic variation at a given location on the structure of AP-4. We find significant clustering of likely pathogenic variants located at the interface between the ß4 and N-µ4 subunits, as well as throughout the C-µ4 subunit. Our work offers an integrated perspective on how genetic and evolutionary forces affect AP-4 structure and function. As more individuals with uncharacterized AP-4 variants are identified, our work provides a foundation upon which their functional effects and disease relevance can be interpreted.


Asunto(s)
Complejo 4 de Proteína Adaptadora/química , Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Evolución Molecular , Variación Genética/genética , Humanos , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de Aminoácido
8.
Mol Biol Cell ; 31(9): 963-979, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32073997

RESUMEN

The heterotetrameric adaptor protein complex 4 (AP-4) is a component of a protein coat associated with the trans-Golgi network (TGN). Mutations in AP-4 subunits cause a complicated form of autosomal-recessive hereditary spastic paraplegia termed AP-4-deficiency syndrome. Recent studies showed that AP-4 mediates export of the transmembrane autophagy protein ATG9A from the TGN to preautophagosomal structures. To identify additional proteins that cooperate with AP-4 in ATG9A trafficking, we performed affinity purification-mass spectrometry followed by validation of the hits by biochemical and functional analyses. This approach resulted in the identification of the fused toes homolog-Hook-FHIP (FHF) complex as a novel AP-4 accessory factor. We found that the AP-4-FHF interaction is mediated by direct binding of the AP-4 µ4 subunit to coiled-coil domains in the Hook1 and Hook2 subunits of FHF. Knockdown of FHF subunits resulted in dispersal of AP-4 and ATG9A from the perinuclear region of the cell, consistent with the previously demonstrated role of the FHF complex in coupling organelles to the microtubule (MT) retrograde motor dynein-dynactin. These findings thus uncover an additional mechanism for the distribution of ATG9A within cells and provide further evidence for a role of protein coats in coupling transport vesicles to MT motors.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Línea Celular Tumoral , Dineínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Transporte de Proteínas , Paraplejía Espástica Hereditaria/metabolismo
9.
Hum Mol Genet ; 29(2): 320-334, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915823

RESUMEN

Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3-5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo , Complejo 4 de Proteína Adaptadora/deficiencia , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adolescente , Autofagosomas/metabolismo , Autofagia/genética , Línea Celular , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hierro/metabolismo , Mutación con Pérdida de Función , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Paraplejía Espástica Hereditaria/genética , Red trans-Golgi/genética
10.
Autophagy ; 16(3): 391-407, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31142229

RESUMEN

Adaptor protein (AP) complexes mediate key sorting decisions in the cell through selective incorporation of transmembrane proteins into vesicles. Little is known of the roles of AP-4, despite its loss of function leading to a severe early onset neurological disorder, AP-4 deficiency syndrome. Here we demonstrate an AP-4 epsilon subunit knockout mouse model that recapitulates characteristic neuroanatomical phenotypes of AP-4 deficiency patients. We show that ATG9A, critical for autophagosome biogenesis, is an AP-4 cargo, which is retained within the trans-Golgi network (TGN) in vivo and in culture when AP-4 function is lost. TGN retention results in depletion of axonal ATG9A, leading to defective autophagosome generation and aberrant expansions of the distal axon. The reduction in the capacity to generate axonal autophagosomes leads to defective axonal extension and de novo generation of distal axonal swellings containing accumulated ER, underlying the impaired axonal integrity in AP-4 deficiency syndrome.Abbreviations: AP: adaptor protein; AP4B1: adaptor-related protein complex AP-4, beta 1; AP4E1: adaptor-related protein complex AP-4, epsilon 1; ATG: autophagy-related; EBSS: Earle's balanced salt solution; ER: endoplasmic reticulum; GFAP: glial fibrillary acidic protein; GOLGA1/Golgin-97/GOLG97: golgi autoantigen, golgin subfamily a, 1; GOLGA2/GM130: golgi autoantigen, golgin subfamily a, 2; HSP: hereditary spastic paraplegia; LC3/MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule-associated protein 2; MAPK8IP1/JIP1: mitogen-acitvated protein kinase 8 interacting protein 1; NEFH/NF200: neurofilament, heavy polypeptide; RBFOX3/NeuN (RNA binding protein, fox-1 homolog [C. elegans] 3); SQSTM1/p62: sequestosome 1; TGN: trans-Golgi network; WIPI2: WD repeat domain, phosphoinositide interacting protein 2.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Axones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Síndrome , Red trans-Golgi/metabolismo
11.
Stem Cell Res ; 40: 101575, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31525725

RESUMEN

Bi-allelic variants in the subunits of the adaptor protein complex 4 lead to childhood-onset, complex hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1), and SPG52 (AP4S1). Here, we describe the generation of induced pluripotent stem cells (iPSCs) from three AP-4-HSP patients with compound-heterozygous, loss-of-function variants in AP4B1 and sex-matched parents. Fibroblasts were reprogrammed using non-integrating Sendai virus. iPSCs were characterized according to standard protocols including karyotyping, embryoid body formation, pluripotency marker expression and STR profiling. These first iPSC lines for SPG47 provide a valuable resource for studying this rare disease and related forms of hereditary spastic paraplegia.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Línea Celular/citología , Células Madre Pluripotentes Inducidas/metabolismo , Paraplejía Espástica Hereditaria/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Adulto , Alelos , Diferenciación Celular , Línea Celular/metabolismo , Células Cultivadas , Preescolar , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Paraplejía Espástica Hereditaria/metabolismo
12.
Nat Commun ; 9(1): 3958, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262884

RESUMEN

Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HeLa , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Fenotipo , Unión Proteica , Proteómica , Vesículas Transportadoras/ultraestructura , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
13.
mBio ; 9(2)2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535204

RESUMEN

Hepatitis C virus (HCV) spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs) AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the µ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2) protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.IMPORTANCE HCV spreads via cell-free infection or cell-to-cell contact that shields it from antibody neutralization, thereby facilitating viral persistence. Yet, factors governing this differential sorting remain unknown. By integrating proteomic, RNA interference, genetic, live-cell imaging, and pharmacological approaches, we uncover differential coopting of host adaptor proteins (APs) to mediate HCV traffic at distinct late steps of the viral life cycle. We reported that AP-1A and AP-2 mediate HCV trafficking during release and assembly, respectively. Here, we demonstrate that dileucine motifs in the NS2 protein mediate AP-1A, AP-1B, and AP-4 binding and cell-free virus release. Moreover, we reveal that AP-4, an adaptor not previously implicated in viral infections, mediates cell-to-cell spread and HCV trafficking. Lastly, we demonstrate cell-to-cell spread regulation by AAK1 and GAK, host kinases controlling APs, and susceptibility to their inhibitors. This study provides mechanistic insights into virus-host determinants that facilitate HCV trafficking, with potential implications for pathogenesis and antiviral agent design.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 4 de Proteína Adaptadora/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas no Estructurales Virales/metabolismo , Liberación del Virus , Línea Celular , Humanos , Inmunoprecipitación , Unión Proteica , Mapeo de Interacción de Proteínas
14.
Traffic ; 19(7): 503-521, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573093

RESUMEN

Adaptor protein complexes mediate cargo selection and vesicle trafficking to different cellular membranes in all eukaryotic cells. Information on the role of AP4 in plants is still limited. Here, we present the analyses of Arabidopsis thaliana mutants lacking different subunits of AP4. These mutants show abnormalities in their development and in protein sorting. We found that growth of roots and etiolated hypocotyls, as well as male fertility and trichome morphology are disturbed in ap4. Analyses of GFP-fusions transiently expressed in mesophyll protoplasts demonstrated that the tonoplast (TP) proteins MOT2, NRAMP3 and NRAMP4, but not INT1, are partially sorted to the plasma membrane (PM) in the absence of a functional AP4 complex. Moreover, alanine mutagenesis revealed that in wild-type plants, sorting of NRAMP3 and NRAMP4 to the TP requires an N-terminal dileucine-based motif. The NRAMP3 or NRAMP4 N-terminal domain containing the dileucine motif was sufficient to redirect the PM localized INT4 protein to the TP and to confer AP4-dependency on sorting of INT1. Our data show that correct sorting of NRAMP3 and NRAMP4 depends on both, an N-terminal dileucine-based motif as well as AP4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Señales de Clasificación de Proteína , Complejo 4 de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Transporte de Proteínas
15.
Plant Physiol ; 176(2): 1824-1834, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242374

RESUMEN

Plant immunity to avirulent bacterial pathogens is associated with subcellular membrane dynamics including fusion between the vacuolar and plasma membranes, resulting in hypersensitive cell death. Here, we report that ADAPTOR PROTEIN COMPLEX-4 (AP-4) subunits are involved in plant immunity associated with hypersensitive cell death. We isolated a mutant with a defect in resistance to an avirulent strain of Pseudomonas syringae pv. tomato (Pto) DC3000 avrRpm1 from a vacuolar protein sorting mutant library of Arabidopsis (Arabidopsis thaliana). The mutant was identical to gfs4-1, which has a mutation in the gene encoding the AP-4 subunit AP4B. Thus, we focused on AP4B and another subunit, AP4E. All of the mutants (ap4b-3, ap4b-4, ap4e-1, and ap4e-2) were defective in hypersensitive cell death and resistance to Pto DC3000 with the type III effector AvrRpm1 or AvrRpt2, both of which are recognized on the plasma membrane, while they showed slightly enhanced susceptibility to the type-III-secretion-deficient P. syringae strain hrcC On the other hand, both ap4b-3 and ap4b-4 showed no defect in resistance to Pto DC3000 with the type III effector AvrRps4, which is recognized in the cytosol and does not induce hypersensitive cell death. Upon infection with Pto DC3000 avrRpt2, the ap4b-3 and ap4b-4 leaf cells did not show fusion between vacuolar and plasma membranes, whereas the wild-type leaf cells did. These results suggest that AP-4 contributes to cell death-associated immunity, possibly via membrane fusion, after type III effector-recognition on the plasma membrane.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas syringae/fisiología , Complejo 4 de Proteína Adaptadora/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Transporte de Proteínas
16.
Proc Natl Acad Sci U S A ; 114(50): E10697-E10706, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180427

RESUMEN

AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4-deficient HSP.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Autofagia , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
17.
Mol Cell Proteomics ; 15(9): 2877-89, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27371946

RESUMEN

Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3ß and ap-4ß knock-out mutants. In ap-3ß mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4ß mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3ß and ap-4ß compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/genética , Arabidopsis/metabolismo , Proteómica/métodos , Complejo 3 de Proteína Adaptadora/metabolismo , Complejo 4 de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Inactivación de Genes , Mutación , Fosforilación , Transporte de Proteínas
18.
Traffic ; 17(4): 400-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26756312

RESUMEN

The adaptor protein 4 (AP4) complex (ϵ/ß4/µ4/σ4 subunits) forms a non-clathrin coat on vesicles departing the trans-Golgi network. AP4 biology remains poorly understood, in stark contrast to the wealth of molecular data available for the related clathrin adaptors AP1 and AP2. AP4 is important for human health because mutations in any AP4 subunit cause severe neurological problems, including intellectual disability and progressive spastic para- or tetraplegias. We have used a range of structural, biochemical and biophysical approaches to determine the molecular basis for how the AP4 ß4 C-terminal appendage domain interacts with tepsin, the only known AP4 accessory protein. We show that tepsin harbors a hydrophobic sequence, LFxG[M/L]x[L/V], in its unstructured C-terminus, which binds directly and specifically to the C-terminal ß4 appendage domain. Using nuclear magnetic resonance chemical shift mapping, we define the binding site on the ß4 appendage by identifying residues on the surface whose signals are perturbed upon titration with tepsin. Point mutations in either the tepsin LFxG[M/L]x[L/V] sequence or in its cognate binding site on ß4 abolish in vitro binding. In cells, the same point mutations greatly reduce the amount of tepsin that interacts with AP4. However, they do not abolish the binding between tepsin and AP4 completely, suggesting the existence of additional interaction sites between AP4 and tepsin. These data provide one of the first detailed mechanistic glimpses at AP4 coat assembly and should provide an entry point for probing the role of AP4-coated vesicles in cell biology, and especially in neuronal function.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Complejo 4 de Proteína Adaptadora/química , Complejo 4 de Proteína Adaptadora/genética , Sitios de Unión , Células HEK293 , Células HeLa , Humanos , Mutación Puntual , Unión Proteica
19.
Plant Physiol ; 170(1): 211-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26546666

RESUMEN

Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1-AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte de Proteínas/fisiología , Red trans-Golgi/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Vacuolas/metabolismo
20.
J Biol Chem ; 290(52): 30736-49, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26542808

RESUMEN

The heterotetrameric (ϵ-ß4-µ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the ß4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the ß4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/química , Complejo 4 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA