Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
EMBO Mol Med ; 16(9): 2210-2232, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169163

RESUMEN

Oxidative Phosphorylation (OXPHOS) defects can cause severe encephalopathies and no effective treatment exists for these disorders. To assess the ability of gene replacement to prevent disease progression, we subjected two different CNS-deficient mouse models (Ndufs3/complex I or Cox10/complex IV conditional knockouts) to gene therapy. We used retro-orbitally injected AAV-PHP.eB to deliver the missing gene to the CNS of these mice. In both cases, we observed survival extension from 5-6 to more than 15 months, with no detectable disease phenotypes. Likewise, molecular and cellular phenotypes were mostly recovered in the treated mice. Surprisingly, these remarkable phenotypic improvements were achieved with only ~30% of neurons expressing the transgene from the AAV-PHP.eB vector in the conditions used. These findings suggest that neurons lacking OXPHOS are protected by the surrounding neuronal environment and that partial compensation for neuronal OXPHOS loss can have disproportionately positive effects.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Encefalomiopatías Mitocondriales , Neuronas , Fosforilación Oxidativa , Animales , Neuronas/metabolismo , Ratones , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/terapia , Terapia Genética/métodos , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Complejo IV de Transporte de Electrones/metabolismo , Vectores Genéticos/metabolismo , Dependovirus/genética , Proteínas de la Membrana , Transferasas Alquil y Aril
2.
Ann Afr Med ; 23(3): 512-513, 2024 Jul 01.
Artículo en Francés, Inglés | MEDLINE | ID: mdl-39034583

RESUMEN

Hyperkinesias in a patient with complex-I deficiency due to the variant m.10191T>C in MT-ND3 have not been previously reported. The patient is a 32 years-old female with multisystem mitochondrial disease due to variant m.10191T>C in MT-ND3, who has been experiencing episodic, spontaneous or induced abnormal movements since age 23. The abnormal movements started as right hemi-athetosis, bilateral dystonia of the legs, or unilateral dystonia of the right arm and leg. They often progressed to severe ballism, involving the trunk, and limbs. The arms were more dystonic than the legs. In conclusion, complex-I deficiency due to the variant m.10191T>C in MT-ND3 may manifest as multisystem disease including hyperkinesias. Neurologists should be aware of hyperkinesias as a manifestation of complex-I deficiency.


RésuméL'hyperkinésie d'une patiente atteinte d'un déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 n'a jamais été rapportée auparavant. La patiente est une femme de 32 ans atteinte d'une maladie mitochondriale multisystémique due à la variante m.10191T>C du gène MT-ND3, qui présente des mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 18 ans. mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 23 ans. Les mouvements anormaux ont commencé par une hémiathétose droite, dystonie bilatérale des jambes ou dystonie unilatérale du bras et de la jambe droite. Ils ont souvent évolué vers un ballisme sévère, impliquant le tronc et les membres. le tronc et les membres. Les bras étaient plus dystoniques que les jambes. En conclusion, le déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 peut se manifester par une maladie multisystémique comprenant des hyperkinésies. Les neurologues doivent être conscients que l'hyperkinésie est une manifestation du déficit en complexe-I. de la déficience en complexe I.


Asunto(s)
Enfermedad de Leigh , Humanos , Femenino , Adulto , Enfermedad de Leigh/complicaciones , Enfermedad de Leigh/diagnóstico , Hipercinesia/etiología , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Mutación
3.
Nat Metab ; 6(8): 1479-1491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048800

RESUMEN

Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs. We first observed that the metabolic rewiring associated with microglia stimulation in vitro (via IL-33 or TAU treatment) was partially changed by complex I (CI) inhibition (via rotenone treatment). In vivo, we generated a mouse model deficient for CI activity in microglia (MGcCI). MGcCI microglia showed metabolic rewiring and gradual transcriptional activation, which led to hypertrophy and dysfunction in juvenile (1-month-old) and adult (3-month-old) stages, respectively. MGcCI mice presented widespread reactive astrocytes, a decrease of synaptic markers accompanied by an increased number of parvalbumin neurons, a behavioral deficit characterized by prolonged periods of immobility, loss of weight and premature death that was partially rescued by pharmacologic depletion of microglia. Our data demonstrate that microglia development depends on mitochondrial CI and suggest a direct microglial contribution to PMDs.


Asunto(s)
Complejo I de Transporte de Electrón , Microglía , Enfermedades Mitocondriales , Animales , Microglía/metabolismo , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/etiología , Fosforilación Oxidativa , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuroglía/metabolismo , Modelos Animales de Enfermedad , Astrocitos/metabolismo , Gliosis/metabolismo , Gliosis/patología , Encéfalo/metabolismo , Encéfalo/patología
4.
Cell Death Dis ; 15(6): 462, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942784

RESUMEN

S100a8/a9, largely released by polymorphonuclear neutrophils (PMNs), belongs to the S100 family of calcium-binding proteins and plays a role in a variety of inflammatory diseases. Although S100a8/a9 has been reported to trigger endothelial cell apoptosis, the mechanisms of S100a8/a9-induced endothelial dysfunction during sepsis require in-depth research. We demonstrate that high expression levels of S100a8/a9 suppress Ndufa3 expression in mitochondrial complex I via downregulation of Nrf1 expression. Mitochondrial complex I deficiency contributes to NAD+-dependent Sirt1 suppression, which induces mitochondrial disorders, including excessive fission and blocked mitophagy, and mtDNA released from damaged mitochondria ultimately activates ZBP1-mediated PANoptosis in endothelial cells. Moreover, based on comprehensive scRNA-seq and bulk RNA-seq analyses, S100A8/A9hi neutrophils are closely associated with the circulating endothelial cell count (a useful marker of endothelial damage), and S100A8 is an independent risk factor for poor prognosis in sepsis patients.


Asunto(s)
Calgranulina A , Calgranulina B , Mitocondrias , Neutrófilos , Sepsis , Calgranulina A/metabolismo , Calgranulina A/genética , Neutrófilos/metabolismo , Sepsis/patología , Sepsis/metabolismo , Sepsis/genética , Humanos , Calgranulina B/metabolismo , Calgranulina B/genética , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Ratones , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mitofagia , Ratones Endogámicos C57BL , Apoptosis
5.
Biochem Biophys Res Commun ; 723: 150178, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38823363

RESUMEN

Cell models of mitochondrial complex Ⅰ (CⅠ) deficiency display significant elevations in reactive oxygen species (ROS) levels and an increase in cellular apoptosis. However, the underlying mechanisms governing anti-apoptotic processes in CⅠ-deficient cells remain elusive. Here, we introduced a mutation in NDUFS7, a crucial subunit of CI, in HEK293T cells and found that the absence of NDUFS7 resulted in reduced cell proliferation, elevated cell death, and increased susceptibility to oxidative stress. Mechanismly, we revealed that the upregulation of SLC7A11 played a crucial role in mitigating cell death resulting from NDUFS7 deficiency. Specifically, the increased expression of SLC7A11 enhanced cystine import, which subsequently reduced cell death by promoting the biosynthesis of reduced glutathione (GSH). Collectively, our findings suggest that SLC7A11-mediated cystine import, representing a novel pathway independent of NADPH production, plays a vital role in protection against NDUFS7 deficiency-induced cell death. This novel pathway provides potential insights into the understanding of pathogenic mechanisms and the therapeutic management of mitochondrial disorders associated with CⅠ deficiency.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cistina , Complejo I de Transporte de Electrón , Humanos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Apoptosis , Muerte Celular , Cistina/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Glutatión/metabolismo , Células HEK293 , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732047

RESUMEN

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Enfermedad de Leigh , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/genética
7.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684731

RESUMEN

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismo
8.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38680020

RESUMEN

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Asunto(s)
Progresión de la Enfermedad , Complejo I de Transporte de Electrón , Interferón gamma , Enfermedad de Leigh , Animales , Ratones , Tronco Encefálico/patología , Tronco Encefálico/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Interferón gamma/metabolismo , Enfermedad de Leigh/patología , Enfermedad de Leigh/genética , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Mitochondrion ; 76: 101858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38437941

RESUMEN

Mitochondrial diseases are caused by nuclear, or mitochondrial DNA (mtDNA) variants and related co-factors. Here, we report a novel m.10197G > C variant in MT-ND3 in a patient, and two other patients with m.10191 T > C. MT-ND3 variants are known to cause Leigh syndrome or mitochondrial complex I deficiency. We performed the functional analyses of the novel m.10197G > C variant that significantly lowered MT-ND3 protein levels, causing complex I assembly and activity deficiency, and reduction of ATP synthesis. We adapted a previously described re-engineering technique of delivering mitochondrial genes into mitochondria through codon optimization for nuclear expression and translation by cytoplasmic ribosomes to rescue defects arising from the MT-ND3 variants. We constructed mitochondrial targeting sequences along with the codon-optimized MT-ND3 and imported them into the mitochondria. To achieve the goal, we imported codon-optimized MT-ND3 into mitochondria in three patients with m.10197G > C and m.10191 T > C missense variants in the MT-ND3. Nuclear expression of the MT-ND3 gene partially restored protein levels, complex I deficiency, and significant improvement of ATP production indicating a functional rescue of the mutant phenotype. The codon-optimized nuclear expression of mitochondrial protein and import inside the mitochondria can supplement the requirements for ATP in energy-deficient mitochondrial disease patients.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Masculino , Femenino , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mutación Missense , Adenosina Trifosfato/metabolismo
11.
Biol Open ; 13(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38304969

RESUMEN

Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.


Asunto(s)
Drosophila , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Fenotipo
12.
Hum Mol Genet ; 33(10): 860-871, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38324746

RESUMEN

Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Proteostasis , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiencia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Autofagia/genética , Estrés Oxidativo/genética , Drosophila melanogaster/genética , Mutación , Lisosomas/metabolismo , Lisosomas/genética , Drosophila/genética , Drosophila/metabolismo , Transducción de Señal
13.
Ultrasound Obstet Gynecol ; 63(3): 392-398, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37718619

RESUMEN

OBJECTIVE: Mitochondrial complex-I deficiency, nuclear type 16, is a rare autosomal recessive disorder caused by biallelic pathogenic variants in NDUFAF5 (C20orf7) (OMIM 618238). The aim of this study was to describe a severe early prenatal manifestation of this disorder, which was previously considered to occur only postnatally. METHODS: This was a multicenter retrospective case series including five fetuses from three non-related families, which shared common sonographic abnormalities, including brain cysts, corpus callosal malformations, non-immune hydrops fetalis and growth restriction. Genetic evaluation included chromosomal microarray analysis and exome sequencing. Two fetuses from the same family were also available for pathology examination, including electron microscopy. RESULTS: Chromosomal microarray analysis revealed no chromosomal abnormality in any of the tested cases. Trio exome sequencing demonstrated that three affected fetuses from three unrelated families were compound heterozygous or homozygous for likely pathogenic variants in NDUFAF5. No other causative variants were detected. The association between NDUFAF5 variants and fetal malformations was further confirmed by segregation analysis. Histological evaluation of fetal tissues and electron microscopy of the skeletal muscle, liver, proximal tubules and heart demonstrated changes that resembled postmortem findings in patients with mitochondrial depletion disorders as well as previously undescribed findings. CONCLUSIONS: Mitochondrial complex-I deficiency and specifically biallelic mutations in NDUFAF5 have a role in abnormal fetal development, presenting with severe congenital malformations. Mitochondrial complex-I disorders should be considered in the differential diagnosis of corpus callosal malformations and brain cysts, especially when associated with extracranial abnormalities, such as fetal growth restriction and non-immune hydrops fetalis. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
Quistes , Complejo I de Transporte de Electrón/deficiencia , Hidropesía Fetal , Enfermedades Mitocondriales , Femenino , Embarazo , Humanos , Estudios Retrospectivos , Fenotipo , Agenesia del Cuerpo Calloso , Metiltransferasas , Proteínas Mitocondriales/genética
14.
Nat Commun ; 14(1): 1172, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859533

RESUMEN

The hypoxic ventilatory response (HVR) is a life-saving reflex, triggered by the activation of chemoreceptor glomus cells in the carotid body (CB) connected with the brainstem respiratory center. The molecular mechanisms underlying glomus cell acute oxygen (O2) sensing are unclear. Genetic disruption of mitochondrial complex I (MCI) selectively abolishes the HVR and glomus cell responsiveness to hypoxia. However, it is unknown what functions of MCI (metabolic, proton transport, or signaling) are essential for O2 sensing. Here we show that transgenic mitochondrial expression of NDI1, a single-molecule yeast NADH/quinone oxidoreductase that does not directly contribute to proton pumping, fully recovers the HVR and glomus cell sensitivity to hypoxia in MCI-deficient mice. Therefore, maintenance of mitochondrial NADH dehydrogenase activity and the electron transport chain are absolutely necessary for O2-dependent regulation of breathing. NDI1 expression also rescues other systemic defects caused by MCI deficiency. These data explain the role of MCI in acute O2 sensing by arterial chemoreceptors and demonstrate the optimal recovery of complex organismal functions by gene therapy.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , NADH Deshidrogenasa , Oxígeno , Animales , Ratones , Hipoxia , NADH Deshidrogenasa/genética , Protones , Ratones Transgénicos , Complejo I de Transporte de Electrón/deficiencia
15.
Medicine (Baltimore) ; 101(34): e30303, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36042640

RESUMEN

BACKGROUND: Leigh syndrome (LS) is a rare, progressive, and fatal neurodegenerative disease that occurs mainly in infants and children. Neonatal LS has not yet been fully described. METHODS: The study design was approved by the ethics review board of Shenzhen Children's Hospital. RESULTS: A 24-day-old full-term male infant presented with a 2-day history of lip cyanosis when crying in September 2021. He was born to nonconsanguineous Asian parents. After birth, the patient was fed poorly. A recurrent decrease in peripheral oxygen saturation and difficulty in weaning from mechanical ventilation during hospitalization were observed. There were no abnormalities on brain magnetic resonance imaging (MRI) or blood and urine organic acid analyses on admission. His lactic acid level increased markedly, and repeat MRI showed symmetrical abnormal signal areas in the bilateral basal ganglia and brainstem with disease progression. Trio whole-exome sequencing revealed 2 heterozygous mutations (c.64C > T [p.R22X] and c.584T > C [p.L195S]) in NDUFS1. Based on these findings, mitochondrial respiratory chain complex I deficiency-related LS was diagnosed. The patient underwent tracheal intubation and mechanical ventilation for respiratory failure. His oxygen saturation levels were maintained at normal levels with partially assisted ventilation. He was administered broad-spectrum antibiotics, oral coenzyme Q10, multivitamins, and idebenone. During hospitalization, the patient developed progressive consciousness impairment and respiratory and circulatory failure. He died on day 30. CONCLUSION: Lip cyanosis is an important initial symptom in LS. Mild upper respiratory tract infections can induce LS and aggravate the disease. No abnormal changes in the brain MRI were observed in the early LS stages in this patient. Multiple MRIs and blood lactic acid tests during disease progression and genetic testing are important for prompt and accurate diagnosis of LS.


Asunto(s)
Enfermedad de Leigh , Enfermedades Neurodegenerativas , Niño , Cianosis/genética , Progresión de la Enfermedad , Complejo I de Transporte de Electrón/deficiencia , Humanos , Lactante , Recién Nacido , Ácido Láctico , Enfermedad de Leigh/complicaciones , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Labio , Masculino , Enfermedades Mitocondriales , Mutación , NADH Deshidrogenasa
16.
Transl Vis Sci Technol ; 11(8): 5, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921115

RESUMEN

Purpose: To characterize postnatal ocular pathology in a Ndufs4-/- mouse model of complex I deficiency using noninvasive retinal imaging and visual testing. Methods: Ndufs4-/- mice and wild-type (WT) littermates were analyzed at 3, 5, and 7 weeks postnatal. Retinal morphology was visualized by optical coherence tomography (OCT). OCT images were analyzed for changes in retinal thickness and reflectivity profiles. Visual function was assessed by electroretinogram (ERG) and optomotor reflex (OMR). Results: Ndufs4-/- animals have normal OCT morphology at weaning and develop inner plexiform layer atrophy over weeks 5 to 7. Outer retinal layers show hyporeflectivity of the external limiting membrane (ELM) and photoreceptor ellipsoid zone (EZ). Retinal function is impaired at 3 weeks, with profound deficits in b-wave, a-wave, and oscillatory potential amplitudes. The b-wave and oscillatory potential implicit times are delayed, but the a-wave implicit time is unaffected. Ndufs4-/- animals have normal OMR at 3 weeks and present with increasing acuity and contrast OMR deficits at 5 and 7 weeks. Physiological thinning of inner retinal layers, attenuation of ELM reflectivity, and attenuation of ERG b- and a-wave amplitudes occur in WT C57BL/6 littermates between weeks 3 and 7. Conclusions: Noninvasive ocular imaging captures early-onset retinal degeneration in Ndufs4-/- mice and is a tractable approach for investigating retinal pathology subsequent to complex I deficiency. Translational Relevance: Ophthalmic imaging captures clinically relevant measures of retinal disease in a fast-progressing mouse model of complex I deficiency consistent with human Leigh syndrome.


Asunto(s)
Enfermedades Mitocondriales , Degeneración Retiniana , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Electrorretinografía , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/diagnóstico por imagen , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/patología
17.
Medicine (Baltimore) ; 101(27): e29239, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801790

RESUMEN

INTRODUCTION: Mitochondrial complex I deficiency (MCID) and abbFINCA syndrome are lethal congenital diseases and cases in the neonatal period are rarely reported. Here, we identified a Chinese Hani minority neonate with rare MCID and FINCA syndrome. This study was to analyze the clinical manifestations and pathogenic gene variations, and to investigate causes of quick postnatal death of patient and possible molecular pathogenic mechanisms. PATIENT CONCERNS: A 17-day-old patient had reduced muscle tension, diminished primitive reflexes, significantly abnormal blood gas analysis, and progressively increased blood lactate and blood glucose. Imaging studies revealed pneumonia, pulmonary hypertension, and brain abnormalities. DIAGNOSIS: Whole-exome sequencing revealed that the NDUFS6 gene of the patient carried c. 344G > T (p.C115F) novel homozygous variation, and the NHLRC2 gene carried c. 1749C > G (p.F583L) and c. 2129C > T (p.T710M) novel compound heterozygous variation. INTERVENTIONS AND OUTCOMES: The patient was given endotracheal intubation, respiratory support, high-frequency ventilation, antishock therapy, as well as iNO and Alprostadil to reduce pulmonary hypertension and maintain homeostatic equilibrium. However, the patient was critically ill and died in 27 days. CONCLUSION: The patient has MCID due to a novel mutation in NDUFS6 and FINCA syndrome due to novel mutations in NHLRC2, which is the main reason for the rapid onset and quick death of the patient.


Asunto(s)
Hipertensión Pulmonar , China , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Humanos , Hipertensión Pulmonar/genética , Recién Nacido , Enfermedades Mitocondriales , Mutación , NADH Deshidrogenasa/genética , Síndrome
18.
Clin Transl Med ; 12(7): e954, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35872650

RESUMEN

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Animales , Bradicardia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , NAD/metabolismo
19.
Free Radic Biol Med ; 188: 434-446, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718301

RESUMEN

Attachment of cargo molecules to lipophilic triphenylphosphonium (TPP+) cations is a widely applied strategy for mitochondrial targeting. We previously demonstrated that the vitamin E-derived antioxidant Trolox increases the levels of active mitochondrial complex I (CI), the first complex of the electron transport chain (ETC), in primary human skin fibroblasts (PHSFs) of Leigh Syndrome (LS) patients with isolated CI deficiency. Primed by this finding, we here studied the cellular effects of mitochondria-targeted Trolox (MitoE10), mitochondria-targeted ubiquinone (MitoQ10) and their mitochondria-targeting moiety decylTPP (C10-TPP+). Chronic treatment (96 h) with these molecules of PHSFs from a healthy subject and an LS patient with isolated CI deficiency (NDUFS7-V122M mutation) did not greatly affect cell number. Unexpectedly, this treatment reduced CI levels/activity, lowered the amount of ETC supercomplexes, inhibited mitochondrial oxygen consumption, increased extracellular acidification, altered mitochondrial morphology and stimulated hydroethidine oxidation. We conclude that the mitochondria-targeting decylTPP moiety is responsible for the observed effects and advocate that every study employing alkylTPP-mediated mitochondrial targeting should routinely include control experiments with the corresponding alkylTPP moiety.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales
20.
Stem Cell Res Ther ; 13(1): 256, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715829

RESUMEN

The most frequent biochemical defect of inherited mitochondrial disease is isolated complex I deficiency. There is no cure for this disorder, and treatment is mainly supportive. In this study, we investigated the effects of human mesenchymal stem cells (MSCs) on skin fibroblast derived from three individuals with complex I deficiency carrying different pathogenic variants in mitochondrial DNA-encoded subunits (MT-ND3, MT-ND6). Complex I-deficient fibroblasts were transiently co-cultured with bone marrow-derived MSCs. Mitochondrial transfer was analysed by fluorescence labelling and validated by Sanger sequencing. Levels of reactive oxygen species (ROS) were measured using MitoSOX Red. Moreover, mitochondrial respiration was analysed by Seahorse XFe96 Extracellular Flux Analyzer. Levels of antioxidant proteins were investigated via immunoblotting. Co-culturing of complex I-deficient fibroblast with MSCs lowered cellular ROS levels. The effect on ROS production was more sustained compared to treatment of patient fibroblasts with culture medium derived from MSC cultures. Investigation of cellular antioxidant defence systems revealed an upregulation of SOD2 (superoxide dismutase 2, mitochondrial) and HO-1 (heme oxygenase 1) in patient-derived cell lines. This adaptive response was normalised upon MSC treatment. Moreover, Seahorse experiments revealed a significant improvement of mitochondrial respiration, indicating a mitigation of the oxidative phosphorylation defect. Experiments with repetitive MSC co-culture at two consecutive time points enhanced this effect. Our study indicates that MSC-based treatment approaches might constitute an interesting option for patients with mitochondrial DNA-encoded mitochondrial diseases. We suggest that this strategy may prove more promising for defects caused by mitochondrial DNA variants compared to nuclear-encoded defects.


Asunto(s)
Antioxidantes , Células Madre Mesenquimatosas , Antioxidantes/metabolismo , Línea Celular , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Homeostasis , Humanos , Células Madre Mesenquimatosas/metabolismo , Enfermedades Mitocondriales , NADH Deshidrogenasa/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA